УДК 541.122.:661.185.1

Е. А. Кирсанов, В. Н. Матвеенко*, Ю. Н. Тимошин, В. В. Таунгавер

ПОТЕНЦИАЛ СЦЕПЛЕНИЯ НЕМАТИЧЕСКОЙ ЖИДКОСТИ НА ПОДЛОЖКЕ С ГОМЕОТРОПНОЙ ОРИЕНТАЦИЕЙ

ANCHORING POTENTIAL OF NEMATIC LIQUID ON THE SUBSTRATE UNDER HOMEOTROPIC ORIENTATION

Коломенский государственный педагогический институт Коломна, Московская область *Московский государственный университет им. М. В. Ломоносова 119899 Москва, Воробьёвы горы

Обсуждаются физико-химическая интерпретация граничных эффектов (роль упругой деформации и межфазной химической энергии) и механизмы объемной упорядоченности в гомеотропных жидких кристаллах.

The physicochemical interpretation of boundary effects (role of elastic distortion and of interfacial chemical energy) and bulk ordering mechanisms in homeotropic liquid crystals are discussed.

Ключевые слова: жидкие кристаллы, потенциал сцепления, гомеотропная ориентация, граничные эффекты, упругая деформация.

Keywords: liquid crystals, anchoring potential, homeotropic orientation, boundary effects, elastic distortion.

Введение

Причины гомеотропной ориентации нематических молекул на подложке до сих пор недостаточно ясны. Уже отмечалось [1], что простое правило Крейга-Кметца не подтверждается для большого числа нематиков на подложках, покрытых различными ПАВ. Известно [2], что при низкой поверхностной плотности адсорбированных молекул гексадециламмоний бромида реализуется планарная ориентация метоксибензилиденбутиланилина (МББА), а при высокой – гомеотропная, что явно связано с параллельной или перпендикулярной ориентацией молекул ПАВ относительно плоскости подложки. Было сделано предположение о стерической природе гомеотропной и наклонной ориентации в случае лецитиновых монослоев на подложке [3]. Коньяр [4] упоминал об ориентации дифильных полярных нематических молекул относительно поверхности раздела за счет взаимодействия с полярными группами на подложке.

Растворенные в нематической жидкости молекулы ПАВ адсорбируются на полярной поверхности, ориентируясь вертикально своими алкильными цепями; молекулы нематического кристалла принимают такую же гомеотропную ориентацию [5]. Этот эффект связан как с изменением межфазной поверхностной энергии γ_{LS} , так и со стерическим взаимодействием молекул с цепями ПАВ.

[©] Кирсанов Е. А., Матвеенко В. Н., Тимошин Ю. Н., Таунгавер В. В., 2009

Метод ЖК–хроматографии [6, 7] позволил определить связь ориентации с наличием амфифильных примесей. Оказалось, что гомеотропная ориентация МББА и ряда цианобифенилов (*n*ЦБ) целиком определяется адсорбцией амфифильных молекул примесей на подложке, то есть имеет стерическую природу.

Устойчивость ориентации нематика на подложке зависит от потенциала сцепления. Он описывает, в общем виде, зависимость поверхностной энергии от угла ориентации директора на подложке. Обычно потенциал сцепления задают в виде:

$$U = \frac{1}{2}W\sin^2(\Psi - \Psi_{\Gamma})$$

где Ψ – угол отклонения нематического директора от нормали подложки, Ψ_{Γ} – угол лёгкого ориентирования. Величина W названа коэффициентом силы сцепления или энергией сцепления, она имеет смысл энергии, необходимой для поворота молекул на некоторый угол относительно оси лёгкого ориентирования.

Существует обширный материал по определению энергии сцепления нематиков с подложкой [8]. Однако интерпретация экспериментальных данных либо отсутствует, либо сводится к поиску эмпирической зависимости W от нематического параметра порядка Q [9]. Недавно [10] была предпринята попытка описать температурную зависимость W(T) в рамках среднеполевой модели для потенциала взаимодействия, взятого в виде ряда сферических гармоник. При этом игнорируются как поверхностное натяжение нематической жидкости, так и поверхностная энергия подложки.

Ранее [11] мы показали, что для гладкой подложки с планарной ориентацией ЖК-молекул энергия сцепления *W* может быть получена с помощью коллоидно-химических характеристик поверхности нематической жидкости и твердой подложки.

На подложке, покрытой ПАВ, в случае гомеотропной ориентации, величина энергии сцепления *W* определяется как энергией взаимодействующих сред, так и стерическим взаимодействием удлиненных нематических молекул с цепями ПАВ.

Целью данной работы является проверка модели, основанной на коллоидно-химических представлениях о природе ориентации нематиков.

1. Энергетические характеристики границы раздела

Межфазную энергию гомеотропного нематического кристалла на подложке можно описать тем же способом, что для планарной ориентации [11]:

$$\gamma_{LS}(\Psi) = \gamma_{S} + \gamma_{L}(\Psi) - 2D\sqrt{\gamma_{L}(\Psi)} , \qquad (2)$$

где

$$D = \sqrt{\zeta \gamma_{S}^{d}} + \sqrt{(1-\zeta)\gamma_{S}^{P}}, \quad \zeta = \frac{\gamma_{L}^{d}}{\gamma_{L}},$$

$$\gamma_{S} = \gamma_{S}^{d} + \gamma_{S}^{p} .$$

Величина поверхностного натяжения $\gamma_L(\Psi)$ для нематического метоксибензилиденбутиланилина (МББА) рассчитана нами ранее [12].

Предположим, что молекулы МББА ориентированы вблизи подложки таким же образом, как у свободной поверхности. То есть, менее полярная часть молекулы направлена в сторону подложки, покрытой слоем ПАВ с длинными алкильными цепями.

Уравнение для поверхностного натяжения МББА имеет вид:

$$\gamma_{l}(\Psi) = \frac{3}{2}A_{2}^{(2)}\sin^{2}\Psi - \frac{1}{2}A_{2}^{(2)} + \frac{35}{8}A_{4}^{(2)}\sin^{4}\Psi - \frac{30}{8}A_{4}^{(2)}\sin^{4}\Psi - \frac{30}{8}A_{4}^{(2)}\sin^{4}\Psi + \gamma_{d} + B_{1}^{(3)}\cos\Psi + \frac{1}{2}B_{3}^{(3)}[5\cos^{3}\Psi - 3\cos\Psi]$$

где коэффициенты определены [12] для различных температур существования мезофа-3Ы.

Предположим, что длинные цепи ПАВ, перпендикулярные подложке, ориентируют удлиненные молекулы МББА также перпендикулярно подложке. Запишем энергию стерического взаимодействия в виде

$$\gamma_n(\Psi) = \frac{1}{2} W_n \sin^2 \Psi \qquad . \tag{4}$$

Эта энергия равна нулю при перпендикулярной ориентации молекул и увеличивается, когда молекула (и цепи ПАВ) наклоняются к подложке.

Полная поверхностная энергия равна

$$\gamma(\Psi) = \gamma_{LS}(\Psi) + \gamma_n(\Psi)$$
⁽⁵⁾

Вариация энергии имеет вид

$$\delta \gamma (\Psi) \cong \left(\frac{\partial \gamma}{\partial \Psi}\right)_{\Gamma} (\Psi - \Psi_{\Gamma}) + \frac{1}{2} \left(\frac{\partial^{2\gamma}}{\partial \Psi^{2}}\right)_{\Gamma} (\Psi - \Psi_{\Gamma})$$

В

равновесном гомеотропном

состоянии,

где $\Psi_{\Gamma} = 0$,

 $\left(\frac{\partial \gamma}{\partial \Psi}\right)_{\Gamma} = 0$, получим

$$\delta \gamma (\Psi) \cong \frac{1}{2} \left(\frac{\partial^2 \gamma}{\partial \Psi^2} \right)_0 \Psi^2$$
⁽⁶⁾

Феноменологическое выражение для потенциала сцепления при малых углах от-клонения принимает вид

$$U(\Psi) = \frac{1}{2}W\Psi^2$$

(7)

Сравнивая (6) и (7) получим с учетом (5): $W = W_L + W_n$,

$$W_{L} = \left(\frac{\partial^{2} \gamma_{LS}(\Psi)}{\partial \Psi^{2}}\right)_{0}$$

$$W_n = \left(\frac{\partial^2 \gamma_n(\Psi)}{\partial \Psi^2}\right)_0$$

Рассчитаем величину $W_{\rm L}$, связанную с межфазной энергией $\gamma_{\rm LS}(\Psi)$:

$$\frac{\partial^{2} \gamma_{LS}(\Psi)}{\partial \Psi^{2}} = \frac{\partial^{2} \gamma_{L}(\Psi)}{\partial \Psi^{2}} \left[1 - \frac{D}{\sqrt{\gamma_{L}(\Psi)}} \right] + \frac{\partial \gamma_{L}(\Psi)}{\partial \Psi} \cdot \frac{\partial}{\partial \Psi} \left[1 - \frac{D}{\sqrt{\gamma_{L}(\Psi)}} \right];$$

$$\frac{\partial \gamma_{L}(\Psi)}{\partial \Psi} = \frac{3}{2} A_{2}^{(2)} \sin 2\Psi + \frac{35}{4} A_{4}^{(2)} \sin^{2}\Psi + \sin 2\Psi - \frac{30}{8} A_{4}^{(2)} \sin 2\Psi - B_{1}^{(3)} \sin\Psi + \frac{1}{2} B_{3}^{(3)} \left[-15\cos^{2}\Psi \sin\Psi + 3\sin\Psi \right]$$
(8)

В случае гомеотропной ориентации, для $\Psi = 0$, получим

$$W_{L} = \frac{\partial^{2} \gamma_{LS}(\Psi)}{\partial \Psi^{2}} \Big|_{0} = \frac{\partial^{2} \gamma_{L}(\Psi)}{\partial \Psi^{2}} \Big|_{0} \cdot \{1 - \frac{D}{\sqrt{\gamma_{L}(0)}}\}$$

......

$$W_{L} = \left[3A_{2}^{(2)} - \frac{30}{4}A_{4}^{(2)} - 6B_{3}^{(3)} - B_{1}^{(3)}\right] \cdot \left\{1 - \frac{D}{\sqrt{\gamma_{L}(0)}}\right\}$$
(10)

Полная энергия сцепления принимает вид

$$W = W_n + W_L = W_n + \left[3A_2^{(2)} - \frac{30}{4}A_4^{(2)} - 6B_3^{(3)} - B_1^{(3)}\right]$$

где

$$\gamma_L(0) = -\frac{1}{2}A_2^{(2)} + \frac{3}{8}A_4^{(2)} + \gamma_d + B_1^{(3)} + B_3^{(3)}$$

2. Сравнение теоретической модели с экспериментальными данными

В работе Наемуры [13] были определены составляющие поверхностной энергии твердых подложек, обработанных сурфактантом

$$[C_nH_{2n+1}(CH_3)_2N(CH_3)_3Si(OCH_3)_3]^+Cl^-.$$

Величины γ_s^d и γ_s^p были получены путем измерения краевых углов капель серии жидкостей с известными величинами γ_L^d и γ_L^p . Энергия сцепления W для МББА была определена с помощью перехода Фредерикса в магнитном поле. В случае гомеотропной ориентации магнитное поле прикладывается параллельно подложке, создавая ориентационную деформацию, которая измеряется либо оптическим методом, либо по величине электрической емкости между подложками.

В случае нежесткого сцепления порог эффекта Фредерикса уменьшается в соответствии с формулой

$$H_{C} = H_{CO} \frac{lW}{\pi K_{33}} ctg \frac{\pi H_{C}}{2H_{CO}}, \qquad \text{rge}$$
$$H_{CO} = (\frac{\pi}{l})(\frac{k_{33}}{\chi_{\alpha}})^{\frac{1}{2}}$$

Здесь *H*со – пороговое поле эффекта в случае жесткого сцепления, l – толщина ячейки, K_{33} – постоянная продольного изгиба (в теории упругости Франка), χ_{α} – анизотропия магнитной восприимчивости нематического кристалла.

Поскольку углы отклонения Ψ малы вблизи порога эффекта Фредерикса, то экспериментальная величина W должна описываться формулой (11). Компоненты поверхностной энергии подложки γ_{s}^{d} и γ_{s}^{p} и полученная из эксперимента величина W [13] представлены в табл. 1. Коэффициенты A, B, γ_{d} при комнатной температуре (294 K) имеют следующие значения [12] в единицах мДж/м²:

$$A_2^{(2)} = -31,506;$$
 $A_4^{(2)} = 2,656;$ $\gamma_d = 68,38;$
 $B_1^{(3)} = -35,61;$ $B_3^{(3)} = -13,01.$

Величина ζ для МББА выбрана равной 0,99.

Рассчитанные нами значения энергии сцепления *W*_L показаны в табл. 1.

Отрицательные значения W_L указывают на тенденцию к планарной ориентации за счет физико-химического (энергетического) взаимодействия нематической жидкости с подложкой. Величина W попределяется как W п = $W - W_L$.

Величина *W*n приведена в табл. 1 и показана на графике (рис. 1) как функция числа атомов углерода (*n*) в алкильной цепи.

Таблица 1

Дисперсионная γ^ds и полярная γ^ps составляющие поверхностной энергии подложки покрытой слоев ПАВ [*n*S(C_nH_{n+1})], экспериментальная энергия сцепления *W* и рассчитанные значение *W*_L и *W*_n (в мДж/м²) для гомеотропного МББА

Сурфактант	$\gamma^{d}{}_{s}$	$\gamma^{\mathrm{p}_{\mathrm{s}}}$	<i>W</i> ,*10 ⁻²	$W_{\rm L},*10^{-2}$	$W_{\rm n}$,*10 ⁻²
$10S(C_{10}H_{21})$	34,9(+-2,4)	2,5(+-0,6)	1,6(+-0,2)	-0,081	1,60
$12S(C_{12}H_{25})$	34,6(+-0,6)	4,2(+-0,2)	2,1(+-0,9)	+0,194	1,91
$14S(C_{14}H_{29})$	34,2(+-1,1)	1,9(+-0,2)	3,2(+-0,8)	-1,096	4,29
$16S(C_{16}H_{33})$	34,6(+-1,9)	2,2(+-0,5)	3,6(+-0,7)	-0,529	4,13
$18S(C_{18}H_{37})$	32,9(+-2,2)	1,1(+-0,4)	1,2(+-0,7)	-2,94	4,14

Рис. 1. Зависимость энергии стерического взаимодействия молекул МББА с подложкой, покрытой слоем ПАВ, от длины алкильной цепи молекулы ПАВ

Нужно отметить, что увеличение длины алкильной цепи приводит к небольшому увеличению энергии сцепления Wn стерического происхождения. Кажется разумным, что более длинные цепи лучше ориентируют нематические молекулы и создают большие возвращающие силы при отклонении директора от перпендикулярной ориентации.

Таким образом, мы оценили величину энергии сцепления и проверили предположение о возможной стерической природе гомеотропной ориентации МББА. Результаты не могут быть достаточно точными из-за больших погрешностей в определении параметров γ_{s}^{d} и γ_{s}^{p} (как показано в табл. 1).

В работе Розенблата [9] определена температурная зависимость энергии сцепления *W*, полученная в результате определения порога Фредерикса в гомеотропном образпе МББА.

уравнение
$$Ctg \frac{\pi H_C}{2H_{CO}} = \frac{\pi K_{33}H_C}{lWH_{CO}}$$
 раскладывалось в ряд по сте-
пеням $(1 - \frac{H_C}{H_{CO}})$.

Приближенное выражение $\frac{H_C}{H_{CO}} \approx 1 - \frac{2K_{33}}{lW}$ использовалось для определения

энергии сцепления W в тонких образцах (l = 2,47 мкм). В табл. 2 приведены значения W в зависимости от температуры Т для слоя нематического МББА между подложками, покрытыми слоем ПАВ (додецилтриметиламмоний хлорид).

Температурные зависимости коэффициентов *A*, *B*, γ_d были рассчитаны нами ранее [12]. Величина нематического параметра порядка *Q* определялась соотношением

$$Q = (1 - \frac{T}{T^+})^{\chi}$$
, где для МББА $\chi = 0,19;$ $T^+ = T_c + 1,2;$ $T_c = 0,2K$

316,2 K

Необходимые значения коэффициентов поверхностного натяжения $\gamma_L(0)$ и параметра порядка Q приведены в табл. 2.

Поскольку точное значение параметра подложки *D* неизвестно, то предположим, что значения ζ , γ_{s}^{d} и γ_{s}^{p} не изменяются в заданном интервале температур.

Упругая энергия задана в виде $\gamma_n = \frac{1}{2} Wn \Psi^2$, причем величина Wn, по-видимому, должна зависеть от температуры в результате теплового движения алкильных цепей.

В первом приближении, допускаем, однако, что энергия сцепления стерической природы Wn не зависит от температуры. Отсюда, появляется возможность рассчитать неизвестные значения Wn и D методом наименьших квадратов. Рассчитанные значения энергии сцепления $W_{\text{расч}}$ показаны в табл. 2. Получена величина стерической энергии сцепления $Wn = 1,78*10^{-2} \text{ мДж/м}^2$, что вполне сравнимо со значениями Wn, рассчитан-

ными по данным Наемуры. Параметр подложки D = 6,3 (мДж/м²), откуда, при $\zeta = 1$,

 $\gamma_{s}^{p} = 0$, получим $\gamma_{s} = 39,7$ мДж/м². Это значение поверхностной энергии подложки имеет разумную величину. Температурная зависимость энергии сцепления *W*(T) показана на рис. 2. Отклонение теоретической кривой от экспериментальных точек вызвано, скорее всего, неучтенной температурной зависимостью *W*n.

Таблица 2

Экспериментальная и расчётная величины энергии сцепления, коэффициенты уравнения для поверхностного натяжения МББА и нематический параметр порядка в зависимости от температуры (энергия имеет размерность мДж / м²)

Т, К	W	Q	$A_{2}^{(2)}$	$A_{4}^{(2)}$	$B_{1}^{(3)}$	$B_{3}^{(3)}$	γ_{d}	$\gamma_{\rm L}(0)$	$W_{\rm pacy}$
298,5	0,0655	0,585	-30,100	2,488	-34,289	-12,324	66,167	35,537	0,0588
300	0,0649	0,576	-29,574	2,422	-33,788	-12,070	65,394	35,231	0,0594

301	0,061	0,570	-29,203	2,377	-33,434	-11,892	64,866	35,033	0,0595
302	0,0588	0,563	-28,815	2,329	-33,062	-11,706	64,328	34,842	0,0593
304	0,0577	0,548	-27,977	2,227	-32,251	-11,306	63,213	34,480	0,0579
305	0,0527	0,540	-27,520	2,173	-31,808	-11,089	62,634	34,312	0,0567
306	0,0494	0,532	-27,035	2,115	-31,333	-10,860	62,036	34,155	0,0552
307,5	0,0477	0,517	-26,241	2,023	-30,551	-10,487	61,102	33,943	0,0521
308,5	0,0427	0,507	-25,659	1,955	-29,973	-10,215	60,447	33,822	0,0495
310,5	0,0405	0,483	-24,322	1,804	-28,633	-9,596	59,037	33,646	0,0429
311,5	0,0394	0,469	-23,538	1,718	-27,837	-9,237	58,265	33,604	0,0387
312	0,036	0,461	-23,106	1,671	-27,396	-9,040	57,856	33,600	0,0365
313	0,0344	0,444	-22,140	1,568	-26,401	-8,603	56,980	33,634	0,0315
313,5	0,0316	0,434	-21,591	1,510	-25,831	-8,357	56,505	33,679	0,0287
314	0,0269	0,422	-20,984	1,447	-25,197	-8,086	55,998	33,750	0,0259
315	0,0228	0,395	-19,525	1,300	-23,653	-7,442	54,848	34,003	0,0197
315,5	0,0167	0,378	-18,607	1,211	-22,668	-7,042	54,171	34,218	0,0164

Рис. 2. Температурная зависимость энергии сцепления нематического МББА на гомеотропно ориентирующей подложке

Нужно отметить, что Барберо и Звездин [10] интерпретировали данные Розенблата [9], используя поверхностную межфазную энергию, которая представлена в виде ряда четных полиномов Лежандра для углов Ψ отклонения директора от нормали. Энергия сцепления в этом случае задана уравнением

$$W = \left(\frac{\partial^{2} \gamma_{LS}(\Psi)}{\partial \Psi^{2}}\right)^{0} = \alpha \langle P_{2} \rangle + \beta \langle P_{4} \rangle$$

Где α и β – некоторые постоянные связанные с коэффициентами ряда полиномов Лежандра. Значения $< P_2 > u < P_4 >$ описывают нематическую ориентационную упорядоченность:

$$\langle P_2 \rangle = \langle P_2(\cos \Theta) \rangle = Q$$

$$\langle P_4 \rangle = \langle P_4(\cos\Theta) \rangle$$

где символ < > означает статистическое усреднение по всем углам ориентации (+) ан-

самбля молекул относительно нематического директора. Хорошее сходство теоретической кривой с экспериментом получено [10] при использовании независимо измеренных параметров Q и $< P_4 >$, определены значения $\alpha = 3,54 \cdot 10^{-2}$, $\beta = 25,10 \cdot 10^{-2}$ мДж/м². В модели Барберо и Звездина используется потенциалы взаимодействия молекулы с другой нематической молекулой и с подложкой, но рассчитанные значения α и β не поддаются независимой проверке. Стерический фактор также игнорируется.

Заключение

В электро- и магнитооптических экспериментах параметр W обычно определяется как эмпирическая величина, входящая в некий феноменологический потенциал сцепления нематика с подложкой. В уравнение, определяющее W, входят различные физические характеристики нематического кристалла, обычно полученные в независимых экспериментах.

Таким образом, точность определения *W* зависит от точности измерения этих характеристик.

Довольно удачная попытка рассчитать величину *W* производилась [10] в рамках молекулярно-статистической теории с помощью достаточно сложного потенциала взаимодействия молекулы с другой нематической молекулой и с подложкой.

Мы описали здесь коллоидно-химический подход к расчету энергии сцепления W, учитывающий дополнительное стерическое взаимодействие нематических молекул с цепями ПАВ. Для использования этого метода необходимо знать функциональную зависимость поверхностного натяжения γ_L от угла наклона Ψ , поверхностную энергию твердой подложки γ_S и величину нематического параметра порядка Q.

Список литературы

- 1. Uchida T., Ishikava K., Wada M. // Mol. Cryst. Liq. Cryst. 1980. Vol. 60. P. 37.
- 2. Proust J., Terminassian-Saraga L., Guyon E. // Sol. Stat. Comm. 1972. Vol. 11. P. 1227.
- 3. Hiltrop K., Stegemeyer H. // Mol. Cryst. Liq. Cryst. Lett. 1978. Vol. 49. P. 61.
- 4. Cognard J. // J. Adhesion. 1984. Vol. 17. № 2. P. 123.
- 5. Конъяр Ж. Ориентация нематических жидких кристаллов и их смесей: Пер. с англ. / Под ред. Г. Л. Некрасова. Минск: Изд-во Белорус. ун-та, 1986. 104 с.

- 6. *Ohgawara M., Uchida T., Wada M.* // Mol. Cryst. Liq. Cryst. 1981. Vol. 74. № 1/4. P. 227.
- 7. Uchida T., Ohgawara M., Shibata Y. // Mol. Cryst. Liq. Cryst. 1983. Vol. 98. P. 149.
- 8. *Марусий Т. Я., Резников Ю. А., Решетняк В. Ю., Хижняк А. И.* // Препринт № 8. АН УССР. Ин-т физики, Киев, 1988.
- 9. Rosenblatt Ch. // J. Phys. (Fr). 1985. T. 45. № 6. P. 1087.
- 10. Barbero G., Zvezdin A. // Phys. Rev. E. 2000. Vol. 62. № 5. P. 6711.
- 11. Кирсанов Е. А., Матвеенко В. Н., Тимошин Ю. Н., Асонова Т. С., Таунгавер В. В. // Жидкие кристаллы и их практическое использование. 2007. Вып. 4. С. 52.
- 12. Кирсанов Е. А., Матвеенко В. Н., Тимошин Ю. Н. // Жидкие кристаллы и их практическое использование. 2005. Вып. 3/4. С. 28.
- 13. Naemura Sh. // Mol. Cryst. Liq. Cryst. 1981. Vol. 68. P. 183.

Поступила в редакцию 16.10.2008 г.