УДК 532/783

Д. О. Рыбаков^{1,2}, В. В. Беляев^{1,3}

ТЕМПЕРАТУРНЫЕ ЗАВИСИМОСТИ МОЛЕКУЛЯРНЫХ КОЭФФИЦИЕНТОВ И ЭНЕРГИЯ АКТИВАЦИИ НЕМАТИЧЕСКОЙ СМЕСИ 2F-3333

¹Московский государственный областной университет, ул. Радио, д.10а, 105005 Москва, Россия. ²Федеральный научно-исследовательский центр «Кристаллография и фотоника» РАН, Ленинский пр., д. 59, 119333 Москва, Россия.

³Российский университет дружбы народов, ул. Миклухо-Маклая, д. 6, 117198 Москва, Россия. E-mail: vic belyaev@mail.ru

В работе представлены частотные спектры диэлектрической проницаемости нематической смеси 2f-3333 со сложной молекулярной структурой, полученные с помощью метода диэлектрической спектроскопии. На основе полученных результатов рассчитана энергия активации релаксационных процессов, а также рассчитаны величины молекулярных коэффициентов, определяющих эти процессы.

Ключевые слова: нематическая смесь, релаксационный процесс, диэлектрическая спектроскопия, молекулярные коэффициенты.

DOI: 10.18083/LCAppl.2018.3.94

D. O. Rybakov^{1,2}, V. V. Belyaev^{1,3}

TEMPERATURE DEPENDENCE OF MOLECULAR COEFFICIENTS AND ACTIVATION ENERGY OF NEMATIC MIXTURE 2F-3333

¹Moscow Region State University, 10-a Radio St., Moscow, 105005, Russia.

²Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 59 Leninskiy Ave., Moscow, 119333, Russia.

³ RUDN University (Peoples' Friendship University of Russia),

6 Miklukho-Maklaya St., Moscow, 117198, Russia.

E-mail: vic belyaev@mail.ru

The paper presents the frequency spectra of the dielectric permittivity obtained by dielectric spectroscopy for the nematic mixture 2f-3333 having a complex molecular structure. On the basis of the obtained results, the activation energy of relaxation processes and the values of the molecular coefficients determining these processes are calculated.

Key words: nematic mixture, relaxation process, dielectric spectroscopy, molecular coefficients.

[©] Рыбаков Д. О., Беляев В. В., 2018

Введение

Известно множество жидкокристаллических веществ, для которых изучены диэлектрические характеристики [1–3], в том числе написано достаточное количество работ, описывающих влияние молекулярного строения на диэлектрические свойства этих веществ, например, [4]. Однако существует много веществ со сложным молекулярным строением, для которых данное влияние не изучено, в частности не установлены статические и динамические характеристики релаксации.

В данной работе методом диэлектрической спектроскопии был исследован процесс частотной релаксации двухчастотной нематической смеси 2f-3333 [5], разработанной фирмой Rolic (Швейцария) в зависимости от температуры системы молекул.

Эксперимент

Исследуемое вещество представляет смесь из нескольких компонент. Компонента А-типа представляет из себя производную фенилбензоата с двумя сложноэфирными мостиковыми –СООфрагментами и двумя концевыми –СN группами, связанными с виниловой СН3=С-группой.

Компонента В-типа или *пропил-бутилен-би- циклогексан* является производной *бициклогексана* с тремя заместителями. Два из них (*алкил и алкилен*) направлены параллельно длинной молекулярной оси, а третья (–CN группа) ориентирована перпендикулярно ей.

На рисунке 1 представлены парциальные дипольные моменты различных молекулярных групп смеси *2f-3333*, а также результирующее значение дипольного момента и его направление.

Рис. 1. Молекулярное строение компонент А-типа и В-типа нематической смеси 2f-3333

Fig. 1. Molecular structure of components of A-type and B-type of nematic mixture 2f-3333

Исследование процесса частотной релаксации от температуры системы молекул (293 K, 298 K, 308 K, 313 K) проводилось при атмосферном давлении $p=10^5$ Ра с помощью метода диэлектрической спектроскопии, широко использующегося для сбора данных о веществах с различной молекулярной структурой для различных физико-технических областей [6, 7].

Жидкий кристалл заправлялся в плоскопараллельные ячейки с ориентирующими покрытиями, которые в одной из них задавали планарную ориентацию молекул (ϵ_{\perp}), а в другой – гомеотропную (ϵ_{\parallel}). Толщины ячеек составляли порядка 15 мкм, и к ним прикладывалось электрическое поле синусоидаль-

ной формы с амплитудой измерительного напряжения 0,1 В. Интервал измерительных частот при этом составлял от 100 Гц до 1 МГц.

Результаты и их обсуждение

Данные частотной релаксации реальной ε' и мнимой ε'' составляющих параллельной и перпендикулярной частей диэлектрической проницаемости ($\varepsilon_{\parallel}(f)$) и $\varepsilon_{\perp}(f)$, соответственно) смеси 2f-3333, полученные для значений температуры системы молекул от 293 K до 313 K при нормальном атмосферном давлении $p=10^5$ Pa, представлены на рис. 2.

 $Puc.\ 2$. Частотные спектры действительной ϵ' и мнимой ϵ'' частей параллельной (a) и перпендикулярной (b) компоненты диэлектрической проницаемости вещества 2f-3333 при температурах T = 293 K (кривые 1 и 2), 298 K (кривые 3 и 4), 308 K (кривые 5 и 6), 313 K (кривые 7 и 8), атмосферном давлении p = 10^5 Pa, измерительном напряжении U = 0,1 B в интервале частот 1 к Γ ц – 10 М Γ ц

Fig. 2. Frequency spectra of the real ε' and imaginary ε" parts of the parallel (a) and perpendicular (b) components of the dielectric permittivity of the substance 2f-3333 at temperatures T = 293 K (curves 1 and 2), 298 K (curves 3 and 4), 308 K (curves 5 and 6), 313 K (curves 7 and 8), atmospheric pressure p = 10⁵ Pa, measuring voltage U = 0,1 B in the frequency range 1 kHz – 10 MHz

Низкочастотные данные $\epsilon_{\parallel}(f)$ и $\epsilon_{\perp}(f)$ соответствуют данным, опубликованным в [8] (ϵ_{\parallel} = 13,0 и ϵ_{\perp} = 9,1).

Аппроксимация экспериментальных данных для $\varepsilon_{\parallel}(f)$ и $\varepsilon_{\perp}(f)$ проводилась методом наименьших квадратов, широко применяющимся в диэлектрических исследованиях ЖК [9–18], с использованием классической формулы Дебая по формуле (1) с учетом эмпирических поправок на емкость двойного электрического слоя (ДЭС) и ионную проводимость:

электрического слоя (ДЭС) и ионную проводимость:
$$\varepsilon * = \varepsilon_{\infty} + \frac{\varepsilon_{S} - \varepsilon_{\infty}}{1 + i\omega\tau} + \frac{A}{\omega^{n}} - i\frac{\sigma}{\omega^{k}\varepsilon_{0}}, \tag{1}$$

где, ε_{∞} и $\varepsilon_{\rm S}$ – высокочастотная и статическая диэлектрические проницаемости, соответственно; ω – круговая частота, τ – дебаевское время релаксации, A – поправка на емкость ДЭС, σ – проводимость постоянного тока, k и n – численные параметры.

На частотных спектрах (рис. 2) можно наблюдать несколько релаксационных процессов ε_{\parallel} компоненты в рассматриваемом интервале частот, связанных с заторможенностью вращения молекул вокруг своих поперечных (релаксация на низких

частотах) и продольных (релаксация в области 1 МГц) осей. Данное явление можно объяснить с точки зрения особенностей молекулярного строения образца, влияющих на коэффициент молекулярного трения:

$$\tau_D = \frac{\zeta}{2k_B T},\tag{2}$$

где ζ – коэффициент трения вращающегося диполя, k_B – постоянная Больцмана, равная 1,38 х 10^{-23} Дж/К, T – температура системы молекул, и коэффициент вращательной диффузии [19, 20]:

$$\zeta_{\parallel,\perp} = \frac{kT}{D_{\parallel,\perp}},\tag{3}$$

где k — постоянная Больцмана, T — температура системы молекул, $\zeta_{\parallel,\perp}$ — параллельная и перпендикулярная составляющие коэффициента молекулярного трения, $D_{\parallel,\perp}$ — параллельная и перпендикулярная составляющие коэффициента вращательной диффузии. Оба коэффициента определяют подвижность молекул, а следовательно, вязкость вещества и релаксационные процессы в нем.

Релаксационный процесс на низких частотах определяется молекулами А-типа, имеющих поляризуемость $\alpha=0,7\cdot 10^{-37}~{\rm K}{\rm J}^2\cdot {\rm m/H}$. Данные молекулы представляют из себя четырехкольчатые структуры с промежуточными сложноэфирными мостиковыми –СОО— фрагментами, что делает их сильно вытянутыми в пространстве. Помимо этого, они обладают параллельной компонентой проекции большого поперечного дипольного момента $\mu\approx 9D$, возникновение которого связано с наличием концевых CN-групп с $\mu\approx 4,39D$, направленных под углами к главной оси, и наличием бензольного кольца с замещенным атомом водорода C_6H_5Cl , дипольный момент μ которого равен 1,7D и направлен также под углом к этой оси.

Наличие релаксационного процесса компоненты ε_{||} в области высоких частот связано с молекулами В-типа, представляющими двухкольчатую структуру, в одном из бензольных колец которой

присутствует заместитель CN, находящийся в экваториальном положении и дающий достаточно сильный поперечный дипольный момент $\mu=3.9D$. При этом поляризуемость α таких молекул мала и составляет $\alpha=0.14\cdot 10^{-37}~{\rm K}{\rm n}^2\cdot {\rm m/H}$. Помимо прочего, молекулы данного типа не имеют на конце завершенного кольца, то есть двойная связь, обладающая большой полярностью, остается свободной. В результате этого, молекулы этой добавки прикрепляются к молекулам компоненты (A), при этом еще больше нарушая ее пространственную конфигурацию, что также является одним из определяющих факторов, приводящих к увеличению вязкости исследуемой смеси.

При увеличении температуры происходит положительный сдвиг частоты релаксации ϵ_{\parallel} (рис. 2) за счет ускорения вращения молекул вокруг поперечной и продольной осей (табл. 1).

Таблица 1. Времена релаксации и молекулярные коэффициенты НЖК 2f-3333 при T = 293, 298, 308 и 313 К, давлении р = 10^5 Ра и измерительном напряжении U = 0,1 В

Table 1. Relaxation times and molecular coefficients of the nematic liquid crystal 2f-3333 at T = 293, 298, 308 and 313 K; pressure p = 10^5 Pa and measuring voltage U = 0,1 V

Параметры	Температура			
	293 К	298 К	308 K	313 K
$f_{ m r\parallel}$	4,5 кГц	7 кГц	26 кГц	43 кГц
	950 кГц	1 МГц	2,2 МГц	3,1 МГц
fr⊥	2,7 МГц	2,8 МГц	4,9 МГц	5,2 МГц
$ au_{ }$	35 мкс	21 мкс	6 мкс	3,7 мкс
	167 нс	142 нс	71 нс	51 нс
$ au_{\perp}$	57 нс	56 нс	32 нс	31 нс
$\zeta_{ }$	2,9·10 ⁻²⁵	1,7·10 ⁻²⁵	5.10-26	3,2·10 ⁻²⁶
	$13,5 \cdot 10^{-28}$	$11,6 \cdot 10^{-28}$	$6 \cdot 10^{-28}$	$4,4\cdot 10^{-28}$
ζ⊥	$4,7 \cdot 10^{-28}$	$4,6 \cdot 10^{-28}$	$2,7 \cdot 10^{-28}$	$2,6 \cdot 10^{-28}$
D_{\parallel}	$1,4\cdot 10^4$	$2,4\cdot10^4$	8.104	13.6·104
	$2,9 \cdot 10^6$	$3,5 \cdot 10^6$	7.10^{6}	$9.8 \cdot 10^6$
D_{\perp}	8,7·10 ⁶	8,9·106	1,5·10 ⁷	1,6·10 ⁷

Температурные зависимости характерных времен релаксации $\tau_{1\parallel}$ и $\tau_{2\parallel}$ компоненты ϵ_{\parallel} , полученные с помощью теоретического расчета, согласно формуле:

$$\tau_D = 1/2\pi f \quad , \tag{4}$$

где τ_D — дебаевское время релаксации, f — частота электрического поля, представлены на рис. 3 и 4.

Puc. 3. Температурная зависимость времени релаксации $\tau_{1\parallel}(a)$ и $\ln(\tau_{1\parallel})$ (b)

Fig. 3. Temperature dependence of the relaxation time $\tau_{1\parallel}(a)$ and $\ln(\tau_{1\parallel})(b)$

Puc.~4. Температурная зависимость времени релаксации $au_{2\parallel}(a)$ и $\ln(au_{2\parallel})$ (b)

Fig. 4. Temperature dependence of the relaxation time $\tau_{2\parallel}(a)$ and $\ln(\tau_{2\parallel})(b)$

Температурные зависимости параллельных составляющих коэффициентов молекулярного трения $\zeta_{1\parallel}$ и вращательной диффузии $D_{1\parallel}$, рассчитанные по данным $\tau_{1\parallel}$ согласно формулам (2) и (3), представлены на рис. 5. Полученный порядок величин этих параметров соответствует данным, представленным в [18, 20–22] и полученным с помощью методов диэлектрической спектроскопии и вискозиметрии.

С ростом температуры величина молекулярного трения $\zeta_{1\parallel}$ уменьшается, и как следствие, растет вращательная диффузия молекул $D_{1\parallel}$, при этом порядок этих величин составляет 10^{-26} Дж·с и 10^4 с⁻¹, соответственно.

Аналогичное поведение наблюдается для значений $\zeta_{2\parallel}$ и $D_{2\parallel}$ (рис. 6), рассчитанных с использованием высокочастотных времен релаксации $\tau_{2\parallel}$. Порядки величин $\zeta_{2\parallel}$ и $D_{2\parallel}$ составляют 10^{-28} Дж \cdot с и 10^6 с $^{-1}$, соответственно.

Рис. 5. Температурная зависимость: слева — коэффициент молекулярного трения $\zeta_{1\parallel}$; справа — коэффициент вращательной диффузии $D_{1\parallel}$

Fig. 5. Temperature dependence: left – molecular friction coefficient $\zeta_{1\parallel}$; right – rotational diffusion coefficient $D_{1\parallel}$

Рис. 6. Температурная зависимость: слева – коэффициент молекулярного трения $\zeta_{2\parallel}$; справа – коэффициент вращательной диффузии $D_{2\parallel}$

Fig. 6. Temperature dependence: left – molecular friction coefficient $\zeta_{2\parallel}$; right – rotational diffusion coefficient $D_{2\parallel}$

Полученные зависимости подтверждают факт того, что времена релаксации $\tau_{2\parallel}$ характеризуют именно релаксационные процессы, связанные с вращением молекул вокруг своих длинных осей, которое, как известно, является более быстрым по сравнению с вращением вокруг своих поперечных осей.

Сдвиг дисперсионных областей ϵ'_{\perp} компоненты (рис. 2) с ростом температуры незначителен. Связано это с тем, что молекулы ориентированы

перпендикулярно электрическому полю, в связи с чем они не преодолевают энергетический барьер, создаваемый соседними молекулами и зависящий от вязкости материала, уменьшающейся с ростом температуры. Поэтому вращение молекул вокруг коротких осей не вносит существенного вклада в процесс поляризации.

Температурная зависимость времени релаксации τ_{\perp} компоненты ϵ_{\perp} представлена на рис. 7.

 $\mathit{Puc.}$ 7. Температурная зависимость времени релаксации $\, \tau_{\perp} \,$

Fig. 7. Temperature dependence of the relaxation time τ_{\perp}

Температурные зависимости ζ_{\perp} и D_{\perp} (рис. 8) показывают, что данные величины с ростом температуры изменяются, однако при близких темпера-

турах данные изменения незначительны, а их величина составляет порядка $10^{-28}\,\mbox{Дж}\cdot\mbox{c}$ и $10^6\,\mbox{ c}^{-1}$, соответственно.

Рис. 8. Температурная зависимость: слева — коэффициент молекулярного трения ζ_{\perp} , справа — коэффициент вращательной диффузии D_{\perp}

Fig. 8. Temperature dependence: left – molecular friction coefficient ζ_{\perp} , right – rotational diffusion coefficient D_{\perp}

Энергия активации релаксационных процессов в нематической мезофазе смеси *2f-3333* рассчитывалась по Арениусовским зависимостям (рис. 9) при помощи формулы (5):

$$E_a = \frac{RT_1T_2\ln(\frac{\tau_2}{\tau_1})}{T_2 - T_1},$$
 (5)

где E_a – энергия активации, R – газовая постоянная, 8,31 Дж/моль·К, T_1 и T_2 – значения температур системы молекул, τ_1 и τ_2 – времена релаксации, соответствующие этим температурам.

Значения энергий активации (табл. 2) для процесса релаксации ε_{\parallel} в низком и высоком диапазонах частот, определяющиеся отсутствием вращения молекул вокруг их поперечной ($E_{a1\parallel}$) и продольной ($E_{a2\parallel}$) осей, соответственно, различаются в 2 раза и составляют значения: $E_{a1\parallel} \sim 82 \cdot 10^3$ Дж/моль и $E_{a2\parallel} \sim 45 \cdot 10^3$ Дж/моль. Энергия активации релаксационного процесса перпендикулярной компоненты диэлектрической проницаемости $E_{a\perp}$ равна $27 \cdot 10^3$ Дж/моль.

Рис. 9. Логарифмические прямые температурной зависимости времен релаксации $\ln[\tau(1/T)]$ для: a) $\tau_{1\parallel}$, b) $\tau_{2\parallel}$, c) τ_{\perp}

Fig. 9. Logarithmic direct temperature dependences of the relaxation times $\ln[\tau(1/T)]$ for: $a) \tau_1 \parallel, b) \tau_2 \parallel, c) \tau_\perp$

Таблица 2. Энергия активации релаксационного процесса НЖК 2f-3333 при атмосферном давлении $p=10^5$ Ра и измерительном напряжении U=0,1 В

Table 2. Activation energy of the relaxation process of the nematic liquid crystal 2f-3333 at the atmospheric pressure $p = 10^5$ Pa and measuring voltage U = 0.1 V

Вещество	$E_{a1\parallel}$, Дж/моль	$E_{a2\parallel}$, Дж/моль	$E_{a\perp}$, Дж/моль
2f-3333	$82 \cdot 10^3$	45·10 ³	$27 \cdot 10^3$

Эти значения соответствуют данным, полученным для других НЖК веществ и смесей [14, 17–19].

Выводы

Исследована диэлектрическая релаксация двухчастотного жидкокристаллического материала 2f-3333 (ROLIC). Частотные спектры $\varepsilon \parallel (f)$ имеют два времени релаксации, определяемые молекулярной структурой основных компонентов смеси, препятствующей вращению молекул вокруг их поперечных или продольных осей. Определены параметры молекулярной релаксации компонент смеси. Для компоненты А-типа (четырехкольчатая производная фенилбензоата) в низкочастотной области время релаксации ты составляет порядка 30 мкс, коэффициент молекулярного трения ζ₁ имеет значение порядка 10^{-26} Дж \cdot с, а коэффициент вращательной диффузии $D_{1\parallel}$ имеет порядок 10^4 с⁻¹. Для компоненты В-типа (производная бициклогексана) в более высоком диапазоне частот τ2 ∥ составляет порядка 150 нс, значение $\zeta_{2\parallel}$ равно 10^{-28} Дж·с, а значение $D_{2\parallel}$ равно $10^6~{\rm c}^{-1}$. Эти значения соответствуют данным, полученным для других НЖК веществ и смесей методами диэлектрической спектроскопии и вискозиметрии.

Значения перпендикулярных составляющих коэффициентов молекулярного трения и вращательной диффузии ζ_{\perp} и D_{\perp} , имеющих порядок 10^{-28} Дж·с и 10^6 с⁻¹, соответственно, были впервые получены из экспериментальных данных диэлектрической спектроскопии, а не из вязкости, как, например, в работе [20].

Полученные результаты будут использованы при разработке новых веществ ЖК-материалов с повышенной скоростью реакции.

Исследование выполнено в рамках научного проекта № 17-47-500752 при финансовой поддержке РФФИ и Правительства Московской области.

Список литературы / References

1. Бобрицкая Е. В., Александрийский В. В., Новиков И. В., Бурмистров В. А. Влияние немезоморфных добавок на свойства жидкокристаллических материалов. IV. Диэлектрическая анизотропия систем ЖК — имидазол // Жидк. крист. и их практич. использ. 2010. Вып. 4. С. 70–76. [Bobrickaya E.V., Alexandriyskiy V.V., Novikov I.V., Burmistrov V.A. Influence of Non-Mesomorphic Additives on Properties

- of Liquid Crystalline Materials. IV. Dielectric Anisotropy of LC Imidazole System. *Liq. Cryst. and their Appl.*, 2010, 4, 70–76 (in Russ.)].
- 2. Коншина Е. А., Щербинин Д. П., Гавриш Е. О., Галин И. Ф., Курочкина М. А. Свойства нематических жидких кристаллов, допированных полупроводниковыми наночастицами CdSe/ZnS // Жидк. криста. и их практич. использ. 2015. Т. 15, № 3. С. 64–81. [Konshina E.A., Shcherbinin D.P., Gavrish E.O., Galin I. F., Kurochkina M.A. Properties of Nematic Liquid Crystals Doped with CdSe/ZnS Semiconductor Nanoparticales. Liq. Cryst. and their Appl., 2015, 15 (3), 64–81 (in Russ.). DOI: 10.18083/LCAppl.2015.3.64].
- 3. Богданов Д. Л., Емельянов В. А., Шубин А. В. Анизотропия диэлектрической проницаемости нематических жидких кристаллов на сверхвысоких частотах // Вестник Московского государственного областного университета. Серия: Физика-математика. 2012. № 2. С. 30–36. [Bogdanov D., Emelianov V., Shubin A. Anisotropy of the dielectric permittivity of nematic liquid crystals in super high frequency range. Bulletin of the Moscow Region State University. Series: Physics-Mathematics, 2012, 2, 30–36 (in Russ.)].
- 4. Чаусов Д. Н., Курилов А. Д., Константинов М. С., Беляев В. В., Богданов Д. Л. Анизотропия диэлектрической проницаемости смеси ЖК-1282 // Жидк. крист. и их практич. использ. 2015. Т. 15, № 2. С. 35–43. [Chausov D.N., Kurilov A.D., Konstantinov M.S., Belyaev V.V., Bogdanov D.L. The anisotropy of the dielectric constant of the mixture ZHK-1282. Liq. Cryst. and their Appl., 2015, 15 (2), 35–43 (in Russ.). DOI: 10.18083/LCAppl.2015.2.35.
- Schadt M. Liquid crystal materials and liquid crystal displays. *Annu. Rev. Mater. Sci.*, 1997, 27, 305–379.
- Urban S. Static dielectric properties of nematics. *Physical Properties of Liquid Crystals: Nematics"*. *Data Reviews Series* / Ed. G.R. Luckhurst, D.A. Dunmur, A. Fukuda. Institution of Electrical Engineers, 2001, 267–276.
- 7. Kresse H. Dynamic dielectric properties of nematics. *Physical Properties of Liquid Crystals: Nematics*". *Data Reviews Series* / Ed. G.R. Luckhurst, D.A. Dunmur, A. Fukuda. Institution of Electrical Engineers, 2001, 277–287.
- 8. Schadt M. Low-Frequency Dielectric Relaxations in Nematics and Dual-Frequency Addressing of Field Effects. *Molecular Crystals and Liquid Crystals*, 1982, **89**, (1–4), 77–92. **DOI**: 10.1080/00268948208074471.
- Mrukiewicz M., Perkowski P., Garbat K., Dabrowski R., Parka J. Dielectric properties of compounds creating dual-frequency nematic liquid crystals. *Actaphysicapolonica A*, 2013,124 (6A), 940–945.
- 10. Kaur S., Dierking I., Gleeson H.F. Dielectric spectroscopy of polymer stabilized ferroelectric liquid crystals. *Eur. Phys. J.E. Soft Matter.*, 2009, **30** (3), 265–274.

- 11. Беляев Б. А., Дрокин Н. А., Шабанов В. Ф. Диэлектрическая релаксация жидкого кристалла транс-4-пропил(4-цианфенил) циклогексан // ФТТ. 2004. Т. 46, № 3. С. 559–562. [Belyaev B.A., Drokin N.A., Shabanov V.F. Dielectric relaxation of the liquid crystal trans-4-propyl (4-cyanophenyl) cyclohexane. *Solid State Physics*, 2004, **46** (3), 559–562 (in Russ.)].
- Gornitska O.P., Koval'chuk A.V., Koval'chuk T.N., Kopčanský P., Timko M., Zavisova V., Koneracka M., Tomašovičová N., Jadzyn J., Studenyak I.P. Dielectric properties of nematic liquid crystals with Fe₃O₄ nanoparticles in direct magnetic field. *Semiconductor Physics, Quantum Electronics & Optoelectronics*, 2009, 12 (3), 309–314.
- 13. Koval'chuk A., Dolgov L., Yaroshchuk O. Dielectric studies of dispersions of carbon nanotubes in liquid crystals 5CB. Semiconductor Physics, Quantum Electronics & Optoelectronics, 2008, 11 (4), 337–341.
- 14. Ларионов А. Н., Богданов Д. Л., Ларионова Н. Н., Ефремов А. И., Тощенко К. А. Диэлектрическая релаксация и вязкоупругие свойства нематических жидких кристаллов // Конденсированные среды и межфазные границы. 2015. Т. 17, № 3. С. 364–370. [Larionov A.N., Bogdanov D.L., Larionova N.N., Efremov A.I., Toschenko K.A. Dielectric relaxation and viscoelastic properties of nematic liquid crystals. Condensed Matter and interphase boundaries, 2015, 17 (3), 364–370 (in Russ.)].
- Jadzyn J., Czechowski G., Mucha M., Nastal E. Dielectric relaxation in polymer dispersed nematic liquid crystal films. *Liq. Cryst.*, 1999, 26 (3), 453–456.
- Singh G., Vijaya Prakash G., Kaur S., Choudhary A., Biradar A.M. Molecular relaxation in homeotropically aligned ferroelectric liquid crystals. *Physica B: Condensed Matter.*, 2008, 403 (18), 3316–3319.

- 17. Беляев Б. А., Дрокин Н. А., Шабанов В. Ф., Баранова В. А. Диэлектрические свойства жидких кристаллов ряда цианопроизводных с различными фрагментами в остове молекул // ФТТ. 2004. Т. 46, вып. 3. С. 554–558. [Belyaev B.A., Drokin H.A., Shabanov V.F., Baranova V.A. Dielectric properties of liquid crystals of a series of cyanogen derivatives with various fragments in the molecules skeleton. Solid State Physics, 2004, 46 (3), 554–558 (in Russ.)].
- Chausov D.N., Kurilov A.D., Belyaev V.V., Kumar S. Parameters of LC molecules' movement measured by dielectric spectroscopy in wide temperature range. *Opto-Electronics Review*, 2018, 26 (1) 44–49.
 DOI: 10.1016/j.opelre.2017.12.001.
- Kuzuu N., Doi M. Constitutive Equation for Nematic Liquid Crystals under Weak Velocity Gradient Derived from a Molecular Kinetic Equation. *Journal of the Physical Society of Japan*, 1983, 52, 3486–3494.
 DOI: 10.1143/JPSJ.52.3486.
- 20. Belyaev V.V., Nemtsov V.B. Molecular friction and rotational viscosity of nematic liquid crystals. *Russ. J. Phys. Chem.*, 1992, **66**, 1471–1476.
- 21. Perkowski P., Mrukiewicz M., Laska M., Garbat K., Piecek W., Dabrowski R. Dielectric behavior of dual-frequency nematic at extra low temperatures. *Phase Trans.*, 2013, **86**, 113–122.
- Urban S., Kula P., Spadlo A., Geppi M., Marini A. Dielectric properties of selected laterally fluoro-substituted 4, 4-dialkyl, dialkoxy and alkylalkoxy[1:1';4':1]terphenyls. *Liquid Cryst.*, 2010, 37, 1321–1330.

Поступила в редакцию 31.08.2018 г. Received 31 August 2018