УДК 544.183.26; 536.7; 532.783

Н. Н. Усанова, Т. Г. Волкова, М. В. Клюев

КОНФОРМАЦИОННЫЙ АНАЛИЗ СТРУКТУРЫ *п-н-*ПРОПИЛОКСИ-*о-*ГИДРОКСИБЕНЗИЛИДЕН-*п'*-БУТИЛАНИЛИНА ПРИ ТЕМПЕРАТУРАХ ФАЗОВЫХ ПЕРЕХОДОВ

CONFORMATIONAL ANALYSIS OF THE *p-n*-PROPYLOXY-*o*-HYDROXYBENZYLIDENE-*p'*-BUTYLANILINE STRUCTURE AT THE TEMPERATURES OF PHASE TRANSITIONS

Ивановский государственный университет, кафедра органической и биологической химии 153025 Иваново, ул. Ермака, 39. E-mail: klyuev@inbox.ru

Полуэмпирическим методом AM1 (HyperChem) определены барьеры внутреннего вращения и проведен конформационный анализ молекулы п-пропилокси-огидроксибензилиден-п'-бутиланилина в кристаллическом состоянии, нематической фазе, изотропной жидкости и при температурах фазовых переходов: кристалл \rightarrow нематик, нематик \rightarrow изотропная жидкость. Показано, что фазовые переходы сопровождаются сменой конформаций и изменением длины молекулы.

The barriers of internal rotation are defined by semi-empirical method AM1 (HyperChem) and the conformational analysis of the p-n-propyloxy-o-hydroxybenzylidene-p'-butylaniline molecule in crystal condition, nematic phase, isotropic liquid and at the temperatures of phase transitions: crystal \rightarrow nematic, nematic \rightarrow isotropic liquid. It is concluded that phase transitions are accompanied by the changes of conformations and the alteration of molecule length.

Ключевые слова: полуэмпирический метод, конформационный анализ, фазовый переход, нематическая фаза

Key words: semi-empirical method, conformational analysis, phase changes, nematic phase

Введение

Конформационный анализ широко используется для изучения строения различных соединений. Как правило, одной структурной формуле для большинства органических соединений соответствует несколько различных устойчивых конфигураций (конформеров), что ведет к многообразию свойств одного и того же соединения. Количество возможных конформеров и их геометрическое строение определяется видами структурной нежесткости молекулы. Наиболее часто различные конформеры возникают при внутреннем вращении одной группы атомов в молекуле относительно других.

Определение молекулярной структуры, установление закономерностей влияния молекулярной структуры термотропных мезогенов на мезоморфизм и физические

[©] Усанова Н. Н., Волкова Т. Г., Клюев М. В., 2008

свойства мезофаз, являются основными задачами физической химии жидких кристаллов.

В исследовании молекулярного строения и конформационных свойств жидкокристаллических веществ, все чаще используются квантовохимические методы, позволяющие выявить особенности структуры и электронных свойств молекул, которые невозможно, крайне трудно или слишком дорого получить экспериментальными средствами.

Для проведения конформационного анализа применяют полуэмпирические и неэмпирические квантовохимические методы [1]. Неэмпирические квантовохимические методы позволяют получать достаточно точную информацию, но чрезвычайно трудоемки. Полуэмпирические методы, характеризующиеся меньшими затратами компьютерного времени, достаточно хорошо воспроизводят электронные свойства, геометрические параметры молекул и др. [2].

В связи с этим полуэмпирическим методом AM1 был проведен конформационный анализ структуры молекулы *n*-пропилокси-*o*-гидроксибензилиден-*n'*бутиланилина при 25 °C, при температурах существования нематической фазы, изотропной жидкости и при температурах фазовых переходов: кристалл – нематик, нематик – изотропная жидкость.

Экспериментальная часть

Расчеты проводились с помощью программы комплекса HyperChem. Для оптимизации геометрии использовался полуэмпирический метод AM1 в приближении изолированной молекулы. Квантовохимические расчеты проводились с полной оптимизацией геометрических параметров (норма градиента не превышала 0,001 ккал/моль) в приближении ограниченного метода Хартри-Фока без учета электронной корреляции. Оптимизация геометрии проводилась без наложения ограничений по типу симметрии. В связи с тем, что при оптимизации может быть получен ложный минимум, обязательно осуществлялся контроль типа стационарной точки, для чего рассчитывались колебательные спектры. Отсутствие отрицательных частот в колебательном спектре позволяло сделать вывод о достижении истинного минимума на поверхности потенциальной энергии.

Конформационный анализ проводился с использованием этой же программы HyperChem, которая имеет встроенную функцию Conformation Search. В качестве информации для поиска конформеров задавались торсионные углы, которые отвечают за нежесткость молекулы, и которые изменяются в процессе «Конформационного поиска», а также интервал температур, соответствующий определенному фазовому состоянию или переходу.

Выбор торсионных углов для конформационного анализа был сделан по результатам анализа потенциальных функций внутреннего вращения для 12 торсионных углов: C₁₀-C₉-O₄₇-H₄₈, C₁₃-N₁₁-C₁₂-C₁₄, C₁₅-C₁₆-C₁₉-H₃₉, H₂₅-C₁-C₂-H₂₆, H₂₆-C₂-C₃-H₂₈, C₂₈-C₃-O₄-C₅, H₃₃-C₁₃=N₁₁-C₁₂, C₃-O₄-C₅-C₁₀, H₃₉-C₁₉-C₂₀-H₄₁, H₄₁-C₂₀-C₂₁-H₄₃, H₄₃-C₂₁-C₂₂-H₄₆, C₇-C₈-C₁₃-H₃₃ (рис. 1), расчеты, которых проводились с шагом торсионного угла 5°.

Конформационный анализ молекулы *n*-пропилокси-*o*-гидроксибензилиден-*n*'бутиланилина проводился при температуре 25°С (соответствует кристаллическому (С) состоянию вещества), в температурном интервале, при котором молекула находится в нематическом состоянии (N), в изотропной жидкости (I) и при температурах фазовых переходов: кристалл – нематик (С \rightarrow N), нематик – изотропная жидкость (N \rightarrow I). Переход С \rightarrow N осуществляется при температуре 52,3 °C, а N \rightarrow I – 61,8 °C

Синтез и изучение жидкокристаллических свойств исследуемого соединения подробно описаны в работе [3].

Обсуждение результатов

Оптимизированная структура молекулы *n*-пропилокси-*o*-гидроксибензилиден-*n*'- бутиланилина и нумерация атомов представлена на рис. 1.

Рис. 1. Структурная формула и нумерация атомов молекулы *п*-пропилокси-*о*-гидроксибензилиден-*п*'-бутиланилина

Для данного соединения характерно наличие акопланарности, проявляющейся в ненулевых торсионных углах C₉-C₈-C₁₃-N₁₁ и C₁₃-N₁₁-C₁₂-C₁₈, которые соответственно равны 51,92° и 36,16°. Значение длин связей входящих в азометиновую группу C₈-C₁₃, C₁₃-N₁₁, N₁₁-C₁₂ соответственно равны 1,47Å, 1,29Å, 1,41Å, что согласуется с экспериментальными и расчетными данными родственных молекул (табл. 1).

Таблица 1

Длина связи, Å	AM1	$C_{30}H_{27}N_2O_2^{-1}$	$C_{22}H_{29}NO_2^2$	$C_{18}H_{21}NO^{3}$	$C_{20}H_{25}NO^{4}$	
		PCA [4]	B3LYP/6-311G(D,P) [1]			
$r(C_8-C_{13})$	1,47	1,45	1,46			
$r(C_{13}-N_{11})$	1,29	1,25	1,28			
$r(N_{11}-C_{12})$	1,41	1,43	1,40			

Значения длин связей (Å) С_{Ar}-C, C=N, N-C_{Ar} молекулы *n*-пропилокси-*о*-гидроксибензилиден-*n'*-бутиланилина

13,5-диметил-1,7-дифенил-4-(2,4,6-тринитрофенил)-2,6диазагепта-2,4-диен

² *п*-этилоксибензилиден-*п*'-гептилоксианилин

³ *п*-метилоксибензилиден-*п*'-бутиланилин

⁴ *п*-гексилоксибензилиден-*п*'-толуидин

На рис. 2 приведены потенциальные функции внутреннего вращения относительно связей C_1 - C_2 , C_2 - C_3 , C_3 - O_4 , O_4 - C_5 в молекуле *n*-пропилокси-*o*-гидроксибензилиден-*n*'-бутиланилина (нумерацию атомов см. на рис. 1).

Рис. 2. Потенциальные функции внутреннего вращения вокруг связей C_1 - C_2 (*a*), C_2 - C_3 (δ), C_3 - O_4 (*b*), O_4 - C_5 (*c*) в молекуле *n*-пропилокси-*o*-гидроксибензилиден-*n*'-бутиланилина

Вращение метильного фрагмента в пропилокси-группе носит свободный характер, величина барьера вращения не превышает 1,5 ккал/моль. Минимальные значения потенциальная функция внутреннего вращения будет иметь при величинах торсионного угла H_{25} - C_1 - C_2 - H_{26} 60°, 180° и 300° (рис. 2, *a*).

Вращение относительно связи C_2 - C_3 возможно в интервале от 75° до 280° (рис. 2, δ). Барьеры внутреннего вращения составляют около 1 ккаль/моль и менее. Наиболее вероятно существование трех конформеров, для которых величины торсионного угла H_{26} - C_2 - C_3 - H_{28} будут составлять 75°, 175°, 280°.

Вид потенциальной функции внутреннего вращения вокруг связи C_3 - O_4 говорит о возможности изменения торсионного угла C_{28} - C_3 - O_4 - C_5 в интервале от -45° до 170° (рис. 2, *в*).

Из рис. 2, *г* следует, что вращения вокруг связи O_4 - C_5 невозможно из-за высокого барьера вращения V = 7,53 ккал/моль и значение диэдрического угла C_3 - O_4 - C_5 - C_{10} должно быть около 0°. На рис. 3 приведены потенциальные функции внутреннего вращения групп – C₄H₉ и ее фрагментов в молекуле *n*-пропилокси-*o*-гидроксибензилиден-*n'*-бутиланилина.

Рис. 3. Потенциальные функции внутреннего вращения вокруг связей C₁₆-C₁₉ (*a*), C₁₉-C₂₀(*б*), C₂₀-C₂₁(*b*), C₂₁-C₂₂(*c*) в молекуле *n*-пропилокси-*o*-гидроксибензилиден-*n*'-бутиланилина

Вращение вокруг связи C_{16} - C_{19} (рис. 3, *a*) носит заторможенный характер, величина барьера вращения составляет около 2 ккаль/моль. Предпочтительными являются конформеры со значениями двугранного угла C_{15} - C_{16} - C_{19} - H_{39} около 0° и 150°.

Из рис. 3, б видно, что наиболее вероятное значение торсионного угла H_{39} - C_{19} - C_{20} - H_{41} 180°. Существование второго конформера со значением угла 285° менее вероятно, поскольку величина барьера вращения составляет 1,79 ккал/моль и характер вращения вокруг связи C_{19} - C_{20} скорее можно назвать заторможенным.

Как и вращение вокруг связи C_2 - H_3 в пропилокси-группе, вращение вокруг связи C_{20} - C_{21} в бутильной группе возможно в интервале от 75° до 280° (рис. 3, *в*). Однако, различия между барьерами внутреннего вращения в этом интервале более существенны чем в пропилокси-группе и составляют около 1 ккал/моль и более (1,68 ккал/моль). Следовательно, наиболее вероятно существование конформера, для которого величина торсионного угла H_{41} - C_{20} - C_{21} - H_{43} будет составляют около 175°.

Вращение вокруг связи С21-С22 в бутильной группе является свободным, вели-

чина барьера вращения равна 1,39 ккал/моль. Минимальные значения потенциальной функции внутреннего вращения будет иметь при величинах торсионного угла H₄₃-C₂₁-C₂₂-H₄₆ 60°, 180° и 300° (рис. 3, *г*).

На рис. 4 приведены потенциальные функции внутреннего вращения относительно связей азометиновой группы. На рис. 4, a – вокруг связи C₈-C₁₃. Вращение вокруг связи C₈-C₅ невозможно из-за высокого барьера вращения V = 4,50 ккал/моль и значение диэдрического угла C₇-C₈-N₁₃-H₃₃ должно быть около 0°.

Вид потенциальной функции внутреннего вращения говорит о невозможности полного вращение вокруг двойной связи $C_{13}=N_{11}$ (рис. 4, δ). Барьер вращения V = 862,15 ккал/моль.

Барьер внутреннего вращения вокруг связи N₁₁-C₁₂ азометиновой группы составляет от 1,92 ккал/моль до 3,21 ккал/моль, следовательно, наиболее вероятное существование конформера, для которого величина торсионного угла будет составлять около 35° и 150° (рис. 4, *в*).

Из рис. 4, *г* следует, что вращение гидрокси-группы не происходит (барьер вращения V = 3,09 ккал/моль) и связь О-Н лежит в плоскости бензольного кольца.

Рис. 4. Потенциальные функции внутреннего вращения вокруг связей C₈-C₁₃ (*a*), C₁₃=N₁₁ (*б*), N₁₁-C₁₂ (*в*), C₉-O₄₇ (*г*) в молекуле *n*-пропилокси-*o*-гидроксибензилиден-*n*'-бутиланилина

Таким образом за нежесткость молекулы отвечают в основном алкильные фрагменты $-C_3H_7$ и $-C_4H_9$. Азометиновая группа является достаточно жесткой, вращение возможно только для связи N_{11} - C_{12} .

Конформационный анализ показал, что исследуемое основание Шиффа может иметь при температуре 25 °С (соответствует кристаллическому состоянию вещества), в температурном интервале, при котором молекула находится в нематическом состоянии, в изотропной жидкости и при температурах фазовых переходов: кристалл – нематик $(C \rightarrow N)$, нематик – изотропная жидкость $(N \rightarrow I)$, несколько конформаций, с различными по величине энергиями (для кристаллической фазы 40 конформаций, нематической фазы и изотропной жидкости 49 и 50 конформаций соответственно, для фазовых переходов С \rightarrow N, N \rightarrow I соотвентсвенно равны 53 и 10 конформаций). Были проанализированы только первые конформации, поскольку они имеют минимальную энергию. Значения торсионных углов представлены в табл. 2

Все фазовые переходы сопровождаются изменением двухгранных (торсионных) углов, исключением является только угол H_{26} - C_2 - C_3 - H_{28} , значение которого меняется в очень узком интервале от 175,5° до 179,1°.

Следует также отметить, что все найденные в конформационном анализе значения торсионных углов соответствуют или очень близки минимумам потенциальных функций внутреннего вращения.

Таблица 2

Значения торсионных углов <i>п</i> -пропилокси-о-гидроксибензилиден-п'-бутиланилина
при температурах существования фаз: кристаллической (С), нематической (N),
изотропной жидкости (I) и фазовых переходов кристалл – нематик (C→N),
нематик – изотропная жидкость (N→I)

Торсионные углы, град.	С	$C \rightarrow N$	Ν	$N \rightarrow I$	Ι
C ₁₃ -N ₁₁ -C ₁₂ -C ₁₄	32,43	149,88	150,20	-32,60	34,37
C ₁₅ -C ₁₆ -C ₁₉ -H ₃₉	164,65	-16,33	133,59	131,46	168,08
$H_{25}-C_1-C_2-H_{26}$	-179,06	60,72	-178,84	60,91	-58,91
H ₂₆ -C ₂ -C ₃ -H ₂₈	176,63	177,51	175,49	175,64	179,09
$C_{28}-C_{3}-O_{4}-C_{5}$	61,02	59,15	163,04	162,28	-47,30
H ₃₉ -C ₁₉ -C ₂₀ -H ₄₁	179,51	179,49	-179,01	-178,73	179,12
H ₄₁ -C ₂₀ -C ₂₁ -H ₄₃	179,65	179,44	-179,76	-179,95	-179,93
H ₄₃ -C ₂₁ -C ₂₂ -H ₄₆	61,37	-58,70	-58,54	-178,57	-178,56

Изменение конформаций, естественно, сопровождается и изменением длины молекулы, которая определяется как расстояние между атомами C_1 и C_{22} (см. рис. 1). Как следует из табл. 3 наиболее сильные изменения длины молекулы *n*-пропилокси-*o*-гидроксибензилиден-*n'*-бутиланилина характерны для фазовых переходов, особенно для перехода $C \rightarrow N$. В целом же можно отметить тенденцию уменьшения длины молекулы с ростом температуры.

Таблица 3

Температура существования фазы, фазового перехода	Структура	Длина молекулы, Å
C, T < 51,3 °C		16,70
N, T = $53,3 - 60,8$ °C		14,35
I, T > 62,8 °C		12,90
C→N, T = 52,3°C		14,24
$N \rightarrow I,$ T = 61,8 °C		13,01

Структура молекулы п-пропилокси-о-гидроксибензилиден-п'-бутиланилина при фазовых состояниях и соответствующих им переходам

В результате проведения квантово-химических расчетов показано, что фазовые переходы сопровождаются сменой конформаций. Молекула *n*-пропилокси-*o*-гидроксибензилиден-*n*'-бутиланилина остается акопланарной при всех конформационных изменениях. Наибольшие изменения претерпевают торсионные углы в алкильных группах (C₃H₇-; C₄H₉-) и этот факт согласуется с экспериментальными данными [5]. «Жесткая часть» молекулы, согласно проведенным расчетам, также способна изменяться.

Таким образом, полученные результаты подтверждают гипотезу [6] о том, что молекулы ЖК в зависимости от агрегатного состояния вещества находятся в виде различных конформеров.

Работа выполнена в рамках Программы «Развитие научного потенциала высшей школы», проект РНП.2.2.1.1.7181.

Список литературы

- 1. Журко Г. А., Александрийский В. В., Бурмистров В. А. // Жидкие кристаллы и их практическое использование. 2005. Вып. 1/2. С. 13 22.
- 2. Усанова Н. Н., Клюев М. В., Волкова Т. Г. // Изв. вузов. Сер. хим. и хим. технол. 2007. Т. 50. Вып. 10. С. 13 17.
- 3. *Майдаченко Г. Г.* Синтез и исследование физико-химических свойств органических жидких кристаллов: Дис. ... канд. хим. наук. Иваново, 1973. 130 с.
- 4. Чехлов А. Н. // ЖСХ. 2003. Т. 44. № 3. С. 510 517.
- 5. *Чумаевский Н. А., Сырбу С. А., Родникова М. Н. и др. //* Жидкие кристаллы и их практическое использование. 2003. Вып. 2. С. 113 116.
- 6. *Клопов В. И.* // Химия растворов: Сб. науч. тр. ИХНР АН СССР. Иваново, 1990. С. 15 – 26.

Поступила в редакцию 13.02.2008 г.