УДК 547.979.057

А. И. Федотова*, В. Е. Майзлиш*, Г. П. Шапошников*, Г. А. Ананьева**, В. В. Быкова**, Н. В. Усольцева**

СИНТЕЗ И МЕЗОМОРФНЫЕ СВОЙСТВА ТЕТРА-(4-ГЕТЕРИЛКАРБОНИЛ)ФТАЛОЦИАНИНОВ МЕДИ

SYNTHESIS AND MESOMORPHIC PROPERTIES OF COPPER TETRA-(4-HETERYLCARBONYL)PHTHALOCYANINES

*Ивановский государственный химико-технологический университет 153000 Иваново, пр. Ф. Энгельса, д. 7. E-mail: ttoc@isuct.ru **Ивановский государственный университет 153025 Иваново, ул. Ермака, д. 39. E-mail: usol@ivanovo.ac.ru

С целью изучения влияния особенностей молекулярного строения дискотических соединений на мезоморфные свойства на основе тетра-4-карбоксифталоцианина меди был синтезирован ряд гетерилзамещенных фталоцианинов меди, содержащих на периферии фрагменты морфолина, пиперидина и его производных, а также азепана. Изучены их физико-химические свойства.

Ключевые слова: синтез, производные тетра-4-карбоксифталоцианина меди, мезоморфные свойства.

With the purpose to study the influence of molecular structure peculiarities of discotic compounds on their mesomorphism on the basis of tetra-4-carboxyphthalocyanine of copper the series of heterylcarbonyl substituted phthalocyanines containing the fragments of morpholine, piperidine and its substitutes, and also of azepane on the periphery was synthesized. Their physical-chemical properties were studied.

Keywords: synthesis, copper tetra-(4-carboxy)phthalocyanine derivatives, mesomorphic properties.

Одной из актуальных проблем современной органической химии является направленный синтез соединений с комплексом заданных свойств с целью их практического использования в различных физико-химических процессах. В решении этой проблемы пристальное внимание уделяется соединениям фталоцианинового (Рс) ряда.

В настоящее время получено огромное количество замещенных Рс, отличающихся природой, количеством и местоположением периферийных заместителей.

Особое место среди них занимают карбоновые кислоты Pc, которые могут быть рекомендованы для использования в качестве красителей [1], катализаторов различных процессов [2 – 4], фотосенсибилизаторов для фотодинамической терапии [5] и т. д. Они могут служить исходными соединениями для синтеза термостойких полимеров [6, 7], а также для получения различных производных Pc [8, 9].

В настоящей работе представлены данные по синтезу и исследованию некоторых физико-химических свойств новых гетерилкарбонилзамещенных фталоцианинов

 $[\]mathbb C$ Федотова А. И., Майзлиш В. Е., Шапошников Г. П., Ананьева Г. А., Быкова В. В., Усольцева Н. В., 2009

меди, содержащих в качестве гетерильного остатка фрагменты насыщенных моноазашиклов.

Синтез исходного тетра-4-карбоксифталоцианина меди осуществляли методом Уайлера из тримеллитовой кислоты (1,2,4-трикарбоксибензола) [10, 11].

Взаимодействием тетракарбоновой кислоты CuPc с тионилхлоридом синтезирован его тетрахлорангидрид [12].

Целевые комплексы (I-V) получены при взаимодействии тетрахлорангидрида тетра-4-карбоксифталоцианина меди с насыщенными моноазациклами. Реакцию проводили в присутствии пиридина в избытке гетероциклического амина при кипении реакционной массы в течение 6 часов.

После охлаждения, в реакционную массу добавляли ацетон, выпавший осадок отфильтровывали, промывали ацетоном и сушили под вакуумом при температуре $80\,^{\circ}$ С. Целевой продукт экстрагировали хлороформом. Очистку осуществляли жидкостной хроматографией на Al_2O_3 (элюент — хлороформ). После удаления растворителя комплексы сушили при температуре $80-90\,^{\circ}$ С.

Полученные соединения (I-V) представляют собой порошки синего цвета, обладающие растворимостью в органических растворителях (бензол, хлороформ, ДМ ΦA).

ИК-спектры тетразамещенных фталоцианинов меди (I - V) типичны для соединений фталоцианинового ряда [13]. В области 1690 - 1730 см $^{-1}$ отмечаются полосы поглощения, характерные для колебаний связей -C=O амидных группировок [14] (рис. 1).

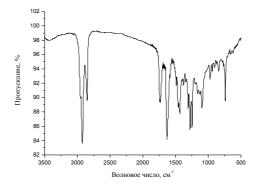
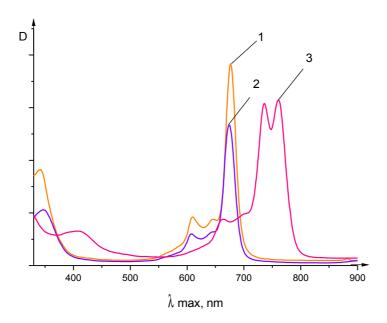


Рис. 1. ИК-спектр соединения I

Известно, что наличие алкилкарбамоильных групп в молекуле фталоцианина обуславливает повышенную растворимость таких соединений в органических растворителях [9, 15]. При исследовании влияния природы амидных групп на спектральные и другие свойства соединений ранее было обнаружено, что переход от моноалкиламидов к диалкиламидам приводит к снижению степени ассоциации и преобладанию в растворе соединения преимущественно в мономерной форме [15]. Это объяснялось отсутствием в структуре последних атома водорода и, вследствие этого, невозможностью образования межмолекулярных водородных связей.


При анализе электронных спектров поглощения (ЭСП) полученных комплексов ($\mathbf{I} - \mathbf{V}$), можно отметить, что так же, как и для ранее упомянутых фталоцианинов с диалкильными фрагментами, в органических растворителях соединения находятся пре-имущественно в мономерной форме. Соблюдение закона Ламберта-Бугера-Бера ($\lg \varepsilon = 4,88 - 5,04$) также свидетельствует об отсутствии ассоциативных процессов.

Установлено, что природа гетерильного фрагмента, а также органического растворителя практически не влияет на характер и положение полос поглощения – в видимой области наблюдается интенсивная длинноволновая полоса поглощения в области 675-677 нм (Q-полоса), колебательный спутник при 610-615 нм и полоса Соре в области 340-345 нм (табл. 1, рис. 2).

Таблица 1

Спектральные характеристики тетра-4-(гетерилкарбонил)
фталоцианинов меди

		Положение длинноволновой полосы		
R	№ комп-	поглощения λ_{max} , нм (lg ϵ)		
K	лекса	(*соотношение интенсивностей)		
		Хлороформ	ДМФА	H_2SO_4 конц.
$-$ N \bigcirc O	Ι	677 (5,04)	675	736, 762
				(0,98:1)*
_N	II	677 (4,98)	675	736, 761
				(0,98:1)*
$-N$ \longrightarrow $-CH_3$	III	677 (4,95)	677	737, 762
	111	077 (4,93)	0//	(0,97:1)*
V CH PI	***	677 (4,95)	675	742, 766
$-N$ \rightarrow $-CH_2Ph$	IV			(0,94:1)*
				738, 762
$-\dot{N}$	\mathbf{V}	677 (4,88)	677	(0,96:1)*
				(0,70.1)

Puc. 2. ЭСП соединения I: 1 - B хлороформе; 2 - B ДМФА, 3 - B конц. H_2SO_4

При замене органического растворителя на концентрированную серную кислоту в ЭСП соединений ($\mathbf{I} - \mathbf{V}$), как и следовало ожидать [16], наблюдается батохромный сдвиг полос поглощения по сравнению со спектрами в органических растворителях (табл. 1, рис. 2). Однако, величина этого сдвига несколько меньше, чем для тетракарбоксифталоцианина меди [17] (на 14 нм) и незамещенного CuPc [18] (на 32 нм). Это связано, по-видимому, с влиянием насыщенных моноазациклов на глубину протонирования по *мезо*-атомам азота. Кроме того, Q-полоса расщеплена на две компоненты примерно равной интенсивности (табл. 1, рис. 2).

Показано, что соединения устойчивы к действию концентрированной серной кислоты. При переосаждении соединения сохраняют свои спектральные и физико-химические свойства.

Отмечено, что полученные соединения способны окрашивать полистирол в интенсивный синий цвет.

Методом оптической поляризационной микроскопии установлено, что соединения **III** и **IV** проявляют мезоморфные свойства. Образование мезофазы происходит при температуре 25,7 и 132,4 °C соответственно (табл. 2, рис. 3, 4). При охлаждении у соединения **III** мезофаза сохраняется до комнатной температуры (рис. 5), а у соединения **IV** происходит стеклование с сохранение текстуры мезофазы (рис. 6).

Кроме того, соединение **III** образует лиомезофазу в контактном препарате с толуолом, а соединение **IV** с хлороформом, т. е. они являются амфотропными (табл. 2, рис. 7, 8).

Таблица 2

Температуры фазовых переходов

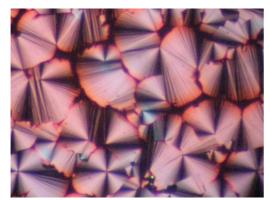

№ сое- динения	Термотропный мезоморфизм	Лиотропный мезоморфизм
I	Cr • 299,6 °C Cr	-
II	Cr • 299,6 °C Cr	-
III	Cr • 25,7 °C Mes • 235,1 °C Iso Охлаждение: Iso • 126,0 °C Mes (сохраняется до T=25 °C)	+ толуол
IV	Cr • 132,4 °C Mes • 190,0 °C Iso Охлаждение: Iso • 168,0 °C Mes • 80,7 °C G, стеклуется с сохранением текстуры мезофазы	+ хлороформ
V	Cr ◆ 299,8 °C Cr	_

Рис. 3. Микрофотография текстуры термотропной фазы соединения **III** (процесс нагрева, T = 25,7 °C), николи скрещены, $\times 250$

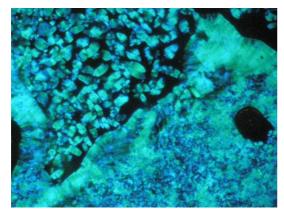

Рис. 4. Микрофотография текстуры термотропной фазы соединения **IV** (процесс нагрева, T = 140,7 °C), николи скрещены, $\times 250$

Рис. 5. Микрофотография текстуры термотропной фазы соединения **III** (процесс охлаждения, T = 25,0 °C), николи скрещены, $\times 250$

Рис. 6. Микрофотография текстуры застеклованной мезофазы соединения **IV** (процесс охлаждения, T = 80,7 °C), николи скрещены, $\times 250$

Puc.~7. Микрофотография текстуры лиотропной фазы соединения **III** в контактном препарате с толуолом, николи скрещены, $\times 250$

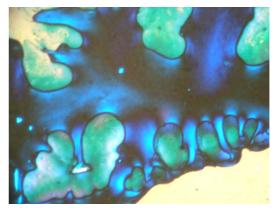


Рис. 8. Микрофотография текстуры лиотропной фазы соединения ${\bf IV}$ в контактном препарате с хлороформом, николи скрещены, $\times\,250$

Экспериментальная часть

Электронные спектры поглощения регистрировали на спектрофотометре HITACHI U-2001 в органических растворителях (ДМФА и хлороформе) и в концентрированной серной кислоте при комнатной температуре в диапазоне длин волн 325 – 900 нм. ИК-спектры регистрировали на приборе «Avatar 360 FT – IR ESP» в области 500 – 4500 см ⁻¹ в тонких пленках (хлороформ). Элементный анализ синтезированных соединений осуществлялся на элементном анализаторе CHNS-O FlashEA, 1112 series. Фазовое состояние комплексов исследовали методом поляризационной микроскопии, используя оптический термополяризационный микроскоп типа «Leitz Laborlux 12 Pol», снабженный термостоликом «Меttler FP 82». Формирование лиотропных мезофаз изучалось в бинарных системах с органическими растворителями (хлороформ, ДМФА, бензол).

Тетрахлорангидрид тетра-4-карбоксифталоцианина меди получали по методике [12].

Тетрагетерилкарбонилзамещенные фталоцианины меди (I-V**).** Общая методика. Навеску 250 мг (0,30 ммоль) тетрахлорангидрида тетра-4-карбоксифта-лоцианина меди вносили в колбу, снабженную обратным холодильником, мешалкой, и добавляли 10,0 мл насыщенного амина (морфолина, пиперидина, его замещенных или азепана), 0,5 мл пиридина. Смесь кипятили на воздушной бане в течение 6 часов.

Полученную массу охлаждали, добавляли ацетон. Выпавший осадок отфильтровывали, промывали ацетоном и сушили под вакуумом при температуре 80 °C. Целевой продукт экстрагировали хлороформом. Окончательную очистку осуществляли жидкостной хроматографией на Al_2O_3 (элюент – хлороформ). Растворитель отгоняли под вакуумом, продукт сушили при температуре 80 °C.

Положение полос поглощения в электронных спектрах поглощения синтезированных комплексов представлено в таблице 1.

Тетра-4-(морфолин-4-ил-карбонил)фталоцианин меди (І). Выход: 140 мг (40 %). Найдено, %: С 61,22; Н 4,45; N 16,83. $C_{52}H_{44}N_{12}O_8Cu$. Вычислено, %: С 60,72; Н 4,31; N 16,34.

Тетра-4-(пиперидин-1-ил-карбонил)фталоцианин меди (ІІ). Выход: 129,7 мг (42 %). Найдено, %: С 64,88; Н 4,95; N 16,73. $C_{56}H_{52}N_{12}O_4Cu$.Вычислено, %: С 65,90; Н 5,14; N 16,47.

Тетра-4-(4-метилпиперидин-1-ил-карбонил)фталоцианин меди (III). Выход: 146,6 мг (45 %). Найдено, %: С 67,46; Н 5,75; N 15,32. $C_{60}H_{60}N_{12}O_4Cu$. Вычислено, %: С 66,93; Н 5,62; N 15,61.

Тетра-4-(4-бензилпиперидин-1-ил-карбонил)фталоцианин меди (IV). Выход: 140,1 мг (43 %). Найдено, %: С 72,85; Н 5,78; N 11,97. $C_{84}H_{76}N_{12}O_4Cu$. Вычислено, %: С 73,05; Н 5,55; N 12,17.

Тетра-4-(азепан-1-ил-карбонил)фталоцианин меди (V). Выход: 187,4 мг (45 %). Найдено, %: С 66,95; Н 5,62; N 15,63. $C_{60}H_{60}N_{12}O_4Cu$. Вычислено, %: С 66,93; Н 5,62; N 15,61.

Список литературы

- 1. *Майзлиш В. Е., Шапошников Г. П., Жукова З. Н. //* ЖПХ. 2002. Т. 75. Вып. 12. С. 2042-2045.
- 2. Гиренко Е. Г., Борисенкова С. А., Калия О. Л. // Изв. АН. Сер. хим. 2002. № 7. С. 1137 1142.
- 3. Фаддеенкова Г. А., Другова Н. Я., Майзлиш В. Е. и др. // ЖПХ. 2000. Т. 3. Вып. 5. С. 774 777.
- 4. *Майзлиш В. Е., Шапошников Г. П.* // Успехи химии порфиринов / Под ред. О. А. Голубчикова. СПб.: НИИ Химии СПбГУ, 2004. Т. 4. С. 327 355.
- 5. *Spiller W., Kliesch H., Wohrle D. et al.* // J. Porphyrins Phthalocyanines. 1998. Vol. 2. № 2. P. 145 158.
- 6. Wohrle D. Polymer square planar metal chelates for science and industry. Synthesis, Properties and applications / Advances in polymers science 50. Springer-Verlag, Berlin, Heidelberg. 1983. P. 56 136.
- 7. Pat. 4450268. Metal phthalocyanine polymers / B. N. Achar, G. M. Fohlen, J. A. Parker (USA). 1974.

- 8. *Соболев А. С., Розенкранц А. А., Гилязова Д. Г. //* Биофизика сложных систем. 2004. Т. 49. Вып. 2. С. 351 379.
- 9. Fujiki M., Tabei H., Kurihara T. // J. Phys. Chem. 1988. Vol. 92. № 5. P. 1281 1285.
- 10. *Шапошников Г. П. Кулинич В. П., Майзлиш В. Е.* // Успехи химии порфиринов / Под ред. О. А. Голубчикова. СПб.: НИИ Химии СПбГУ, 1999. Т. 2. С. 190 222.
- 11. A*char B. N., Fohlen G. M., Parker J. A. et al.* // Indian J. Chem. 1988. Vol. 27A. P. 411 416.
- 12. *Смирнова А. И., Майзлиш В. Е., Усольцева Н. В. и др.* // Изв. АН. Сер. хим. 2000. № 1. С. 129 136.
- 13. Сидоров А. Н., Котляр И. П. // Опт. и спектр. 1961. Т. 11. Вып. 2. С. 175 186.
- 14. *Дайер Д. Р.* Приложения абсорбционной спектроскопии органических соединений. М.: Химия, 1970. 163 с.
- 15. Соловьева Л. И., Лукьянец Е. А. // ЖОХ. 1980. Т. 50. Вып. 5. С. 1122 1131.
- 16. *Березин Б. Д.* Координационные соединения порфиринов и фталоцианина. М.: Наука, 1978. 280 с.
- 17. *Майзлиш В. Е., Снегирева Ф. П., Шапошников Г. П. и др.* // Изв. вузов. Сер. хим. и хим. технол. 1990. Т. 33. Вып. 1. С. 70 74.
- 18. Электронные спектры фталоцианина и родственных соединений: Каталог / *Н. И. Бундина, М. Г. Гальперн, В. М. Деркачева и др.* // Под ред. Е. А. Лукьянца. Черкассы: НИИТЭХИМ, 1989. 93 с.

Поступила в редакцию 18.02.2009 г.