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The edge optical modes in spiral photonic liquid crystals are theoretically studied for the certainty on the
example of chiral liquid crystals (CLCs) with an anisotropic local absorption. The model chosen here (absence of
dielectric interfaces in the studied structures) allows one to get rid off the polarization mixing at the surfaces of
the CLC layer and to reduce the corresponding equations to the equations for the light of diffracting in the CLC
polarization only. The dispersion equation determining connection of the edge mode (EM) frequencies with the
CLC layer parameters (anisotropy of local absorption, CLC order parameter) is obtained. Analytic expressions
for the transmission and reflection coefficients of CLC layer for the case of CLC with an anisotropic local
absorption are presented and analyzed. It is shown that the CLC layers with locally anisotropic absorption reduce
the EM lifetimes (and increase the lasing threshold) by the way different from the case of CLC with an isotropic
absorption. Due to the Bormann effect revealing of which is different at the opposite stop-band edges in the case
of CLC layers with an anisotropic local absorption the EM life-times for the EM frequencies at the opposite stop-
bans edges may be significantly different. The options of experimental observations of the theoretically revealed
phenomena are briefly discussed.
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JJOKAJIM30OBAHHBIE KPAEBBIE MO/JIbI B OIITUKE ®OTOHHBIX KUJAKHUX KPHUCTAJJIOB
C JIOKAJIBHOU AHU3OTPOIIMEU NIOINIOLEHUSA

HuctutyT Teopernueckoit puzuku um. J1. /1. Jlanmay PAH,
mp. Axaa. CemeHoBa, 1. la, 142432 Yepnoronoska, Poccus. E-mail: bel@landau.ac.ru

Teopemuuecku uzyuenvl Kpaegvle Onmuyeckue Moovl 8 CNUPALbHBIX YOMOHHBIX HCUOKUX KPUCMALLAX HA
npumepe xupanvhuix cuokux kpucmannog (CLCs) ¢ noxanvHoU anuzomponueil nociowjenus. Hcnonvzosannas
Mooenb  (omcymcemeue  OUINeKMPUHEeCKUX 2Spanuy 6 U3VYaeMblX CMPYKmypax) no3eonsem npenedpeud
npeobpazosanuem noaspusayuil na epanuyax CLC crnoeg u ceéecmu coomgemcmeyroujue YpasHeHus K YpasHeHUusM
onst ceema monvko ougpazupyrowen ¢ CLC nomsipuzayuu. Tlonyueno oucnepcuonnoe ypasHenue, cesasviéaoujee
yacmomsl Kpaegvix Moo (EM) ¢ napamempamu CLC cros (noxanbHas anuzomponus no2ioujeHuss, napamemp
nopsioka ¢ CLC). [lonyuenvl u nNpoaHanu3upoO8aHvl AHATUMUYECKUE GbIPANCCHUST Ol KOIPOUYueHmos
npoxoocoenus u ompadicenuss CLC cnos 6 ciyuae CLC ¢ noxanvhotl anuzomponueti noziowenus. Iloxkazano, umo
6 CLC cnosx ¢ 1oxkanvhou anuzomponuel no2ioujenus ymenvuaemes epems scusiu EM (u 6ospacmaem nopoe
nazepuotl eenepayuu) He max, kax 6 ciyuae CLC ¢ usomponnvim nocnowenuem. Bpems orcusnu EM ¢ vacmomamu
HA NPOMUBONONIONCHBIX UYACMOMHBIX SPAHUYAX 3aNpPeweHHol 0l PACHPOCMPAHEHUs C8emd 30HbL MOJiCem
OKA3AMbCS CYWECTNBEHHO DPA3IUYHbIM U3-3a nposigienus spgpexma bopmana ¢ CLC crnosx ¢ nokanwHou
anuzomponueu noerowenus. Kpamkxo 00cyscoaromes nepcnekmugvl  IKCHEPUMEHMATbHO20  HAOMI00eHUs
meopemuiecKku 8blsA8NIeHHbIX dPheKmos.

Knwowuesvie cnosa: xupanvhvle dicuoKue Kpucmasivl, Kpaesvbie MOObl, HUKONOPO208AS NA3EPHAS
2enepayusl, 10KaIbHAL AHU30MPonus no2nowenust, s¢gexm bopmana.
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1. Introduction

Recently there have been much activities in the
field of localized optical modes, in particular, edge
modes (EM) and defect modes (DM) in chiral liquid
crystals (CLCs) mainly due to the possibilities to reach
a low lasing threshold for the mirror less distributed
feedback (DFB) lasing [1-4] in CLCs. The EMs
existing as localized electromagnetic eigenstates with
its frequency close to the forbidden band gap were
investigated initially in the periodic dielectric
structures [5]. The corresponding EMs in CLCs, and
more general in spiral media, are very similar to the
EMs in one-dimensional scalar periodic structures.
They reveal abnormal reflection and transmission
[1, 2], and allow distributed feedback (DFB) lasing at
a low lasing threshold [3].

Almost all theoretical studies of the EM and
DM in chiral and scalar periodic media were
performed by means of a numerical analysis with the
exceptions [6, 7] where the known exact analytical
expression for the eigenwaves propagating along the
helix axis [8—10] were used for a general study of the
DM. The approach used in [6, 7] looks as fruitful one
because it allows to reach an easy understanding of the
DM and EM physics, and this is why it deserves
further implementation in the study of the EM and
DM.

In the cited studies the optical absorption in
CLC was regarded as an isotropic. However the case
of isotropic absorption in CLC does not cover all
options happening in CLC. For example, quite
common is alignment of dye molecules in liquid
crystals with clearly presented absorption lines. If the
director distribution in a liquid cryson in the sample
may exist and manifest itself in some circumstances
[11, 12]. The corretal sample is not homogeneous
(what is the case of CLC) a local anisotropy of
absorptisponding effects depend on the value of liquid
crystal order parameter and disappear if the order
parameter value is zero, i.e. at the point of liquid
crystal phase transition to liquid. The corresponding
effects in the CLC transmission and reflection spectra,
in particular Bormann effect, were studied both
experimentally [13, 14] and theoretically [11, 12, 13].
In the present paper the influence of local anisotropy
of absorption on characteristics of localized modes is
theoretically studied. Below analytical solutions for
the EM (associated with a local anisotropy of
absorption in CLCs) are presented and some limiting
cases simplifying the problem are considered.

2. The Boundary-Value Problem

To investigate EM in a CLC we have to
consider a boundary problem, i.e. transmission and
reflection of light incident on a CLC layer along the
spiral axis [10-12]. We assume that the CLC is
represented by a planar layer with a spiral axis
perpendicular to the layer surfaces (Fig.1). We also
assume that the average CLC dielectric constant
coincides with the dielectric constant of the ambient
medium. This assumption practically prevents
conversion of one circular polarization into another at
the layer surfaces [11, 12], and allows to have only
two eigenwaves with diffracting circular polarization
taken into account.

The procedure of obtaining the reflection R and
transmission T coefficients for a CLC layer with a
local anisotropy of absorption is similar to the one for
a non-absorbing CLC however some complications
arise due to the fact that the elements of CLC
dielectric tensor are complex quantities now.

Let us begin from discussing of the dielectric
tensor of a substance with locally anisotropic
absorption. The principal values of corresponding
dielectric tensor are complex and have different
imaginary parts depending in the case of CLC on the
liquid crystal order parameter S [10]. In general case
all three imaginary parts are different. For a CLC the
imaginary parts are different for S=1 and are equal
for §=0. Returning to the CLC we assume for
simplification of the problem that only one principal
value of dielectric tensor is complex at S=1. This
corresponds to the assumption that the absorption in
CLC is due only to dye's molecules and at S=1 a
complete ordering of the dye's molecules occurs. We
assume also that the axis corresponding to the real
principal value of the dielectric tensor is directed
along the spiral axis and two other axes are rotating
around the spiral axis. These rotating axes determine
the local, depending on the coordinate along spiral
axis, direction of absorption anisotropy. Now we have
to insert complex principal values of dielectric tensor
in the expressions for dielectric anisotropy
[11, 12, 15]. As the result the dielectric anisotropy Ae
(see below) becomes a complex quantity. Luckily, the
expressions for reflection and transmission
coefficients for light propagating in a CLC layer along
the cholesteric axis [11, 12, 15] are exact and are
applicable to the case of anisotropic absorption which
is under consideration here.
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Under the accepted assumption the imaginary
parts of principal values of the dielectric tensor for S
differing from one are by the following way expressed
via the imaginary part of the single complex principal
value €, or &, at S=1 for the cases of absorption
oscillatory axis parallel and perpendicular to the long
molecular axis, respectively:

Im[g)] = Im[e;](1+2S5)/3, Im[e,] =Im[g](1-S)/3 (la)
and the local dielectric anisotropy is
Ag= g —&L= RG[SH —g |[t+ig S, (2a)

for the oscillatory axis parallel to the long molecular
axis;
Im[e,] = Im[&,](1+25)/3, Im[g|] =Im[e,](1 - S)/3 (1b)
and the local dielectric anisotropy is

Ag =g — &, =Re[g — &, ] — ilm[e,]S. (2b)
for the oscillatory axis perpendicular to the long
molecular axis.

In what will be followed below we shall present
the results related to the first option, for the case of
absorption oscillatory axis parallel to the long
molecular axis. If for the first option the Bormann
effect reveals itself close to the high frequency stop-
band edge, for the second option a similar revealing of
the Bormann effect happens close to the low frequency
stop-band edge [11, 12].

In the view of refs. [10-12, 15, 16], we state
here only the final expressions for the amplitude
transmission 7" and reflection R coefficients for light
incident on a CLC layer of thickness L. These are

given as
R(L) = 8sinqL/{(qt/x*)cosqL +

+1[(t/2K)* + (q/k)*— 1]singL} (3a)
T(L) = exp[ixL](qu/x>)/ {(qu/*)cosqL +
+1[(t/2K)* + (g/x)*~ 1]singL}, (3b)

where
q=x{l +(T/2K)2—[(1:/K)2+82]”2 }1/2 @)

and, &= (1 +1iy)Re[g + €,]/2, & =Re[g — &, ]/Re[e] +
+ ig1S/Refgg] and y = g,(1 — S)/3Re[g] is the parameter
describing the locally isotropic part of absorption.
Here 6 is the dielectric anisotropy with g and €, as the
local principal values of the CLC dielectric tensor
[10-12], k = wey"*/c with ¢ as the speed of light, and
T =4n/p with p as the cholesteric pitch.

Note, that in the case of absorption due solely to
the dye molecules solved in CLC only one principal

value of dielectric tensor is complex at S = 1 if the
absorption oscillators of dye molecules are directed
along a sole axis in the molecule and the degree of
orientational order of the dye molecules is the same as
for CLC. In principle, the orientational order
parameter for dye molecules may be different from the
CLC order parameter S.

Y

CLC

Fig. 1. Schematic of the boundary problem for edge mode

As one expects the CLC local absorption
anisotropy reveals itself in the reflection and
transmission spectra due to the Bormann effect (well
known in the X-Ray diffraction ) [11, 12, 13] revealing
itself in the absorption suppression at one of the stop
band edges. Contrary to the case of isotropic
absorption with the reflection and transmission spectra
being symmetric relative the stop band centre in the
case of locally anisotropic absorption in CLC the
spectra are nonsymmetric relative the stop band
centre. In the case of the CLC with a locally
anisotropic absorption [11, 12, 13] the absorption
suppression at one of the stop band edges, as in the X-
ray case, also takes place and is due to orthogonally of
the whole optical electric field in the sample to the dye
molecular absorbing oscillators at the frequency of one
stop band edge. The Figs. 2 and 3 demonstrate the
Bormann effect in reflection and transmission,
respectively, in a CLC layer with locally anisotropic
absorption (the calculations performed according Egs.
(3) for the order parameter S = 1, however, here and
below the notations R and 7 are different from the
ones in the Egs. (3) and relate to the intensity
reflection and transmission coefficients).

The Bormann effect demonstrates itself most
clearly in the spectra of total absorption in a sample
given by 1-R-T (see Fig. 4).
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REFLECTION

Fig. 2. Reflection (Thin curve corresponds to the complete absence of absorption) versus
the dimensionless frequency v =5[2(® — ®g)/(dwg) — 1] used also in all Figures below for locally
anisotropic absorption in CLC layer (see Fig. 1) at 3 = 0.05 +0.031, 1 =300 ( / = Lt = 47N,

where N is the director half-turn number at the CLC layer thickness L)
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Fig. 3. Transmission versus frequency for locally anisotropic absorption
in CLC layer (see Fig. 1) at 6 = 0.05 +0.015i, 1 =300
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Fig. 4. Total absorption 1-R-T versus frequency for locally anisotropic absorption
in CLC layer (see Fig.1) at 6 = 0.05 +0.0151, 1 = 300

The Figs. 2-4 demonstrate increasing of
reflection and transmission at one stop band edge
compared to the other stop band edge and a strong
suppression of the absorption at this stop band edge.
To illustrate the dependence of the Bormann effect on
the value of the order parameter S the Figs. 5, 6
present the calculation results for the reflection and
total absorption 1-R-T for the values of S =1, 0.5,
0.3, 0, respectively. These figures show that the
suppression of absorption effect is decreasing with
decrease of the CLC order parameter S. Here should
be mentioned that in the above calculations was
assumed that the pitch value and § are the same for all
values of S which means that the accepted assumption
allows the dye molecules order parameter variations to
be different from the corresponding variations of the
CLC molecule's order parameter. In real situations the
variations of the order parameter is connected usually
with the temperature variations (and as it is known the
pitch is a temperature dependent CLC parameter). The
Fig. 7 demonstrates that the total absorption at the EM
frequency decreases with the CLC layer thickness
increase (L at the Fig. 7 is 10 times larger than at the
Fig. 6). The Fig. 8 demonstrates that the transmission
T at the EM frequency decreases with the CLC order
parameter S increase and a more pronounced decrease
happens at the stop-band edge opposite to the edge
where the reflection is increased due to the Bormann
effect.

The calculated at Figs. 6,7 absorption spectra are
directly related to the luminescence spectra if the dye
absorption line overlaps with the stop-band. Because
the absorbed optical photons of the incident beam are
reemitted as luminescence photons the absorption
maximum results in a luminescence intensity
maximum, naturally, at the frequency being shifted in
the direction of lower frequencies. By this way the
luminescence spectra occurred to be dependent on the
local absorption anisotropy revealing different
luminescence intensity for the pumping wave
frequency coinciding with the opposite stop-band
edges frequencies.

3. Edge mode influenced by local absorption
anisotropy

In a non-absorbing CLC y = 0 in the general
expression for the dielectric constant & = go(1 + iy).
The calculations of the reflection and transmission
coef-ficients as functions of the frequency give the
well-known results [8—12] different from the curves
pre-sented at the Figs. 3—6 , in particular, at y = 0
T+R =1 for all frequencies. Let us study how a
locally anisotropic absorption in CLC influences on
the properties of EM existing at discrete frequencies
outside the stop band [15, 16], in particular, on the EM
life-time.
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To do this we have to solve the corresponding
dispersion equation. Following the reference [15] one
gets the dispersion equation in the form similar to the
case of zero absorption

tgqgL = i(qu/x’)/[(v2x)* + (q/x)* - 1], (5)
however the entering in this equation parameters occur
to be given by the Egs. (1,2,4), i.e. are dependent on
some additional quantities compared to the case of
zero absorption.

Generally, solutions to Eq. (5) are discrete EM

frequencies wgy situated outside of the stopband edges
which may be found only numerically. The EM
frequencies gy turn out to be complex and may be
presented as ®gv = ® (1 + iA) where in real situations
A is a small parameter determining the EM life-time.
From a general analysis of Eq. (5) one concludes that
the EM life-times at the frequencies outside the
opposite stop band edges are different in the case of
locally anisotropic absorption (there is no symmetry in
their values relative to the stop band centre).
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Fig. 5. Reflection for a CLC layer with local anisotropy of absorption versus
the frequency for §=0, 0.3, 0.5,1 (The curve thickness is growing with increase of S)
at Im[g;]/Re[gg] = 0.03, 6 = 0.05, 1 =300, (The thinnest curve corresponds
to complete absence of absorption)
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Fig. 6. Absorption for a CLC layer with local anisotropy of absorption versus
the frequency for S =0, 0.3, 0.5,1 (The curve thickness is growing with increase of S)
at Im[e,]/Re[go] = 0.03, 3 =10.05, 1 =300
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Fig. 7. Absorption for a CLC layer with local anisotropy of absorption versus
the frequency for S=0, 0.3, 0.5,1 (The curve thickness is growing with increase of S)
at Im[g,]J/Re[go] = 0.03, 5 = 0.05, 1 = 3000
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Fig. 8. CLC layer transmission versus frequency for locally anisotropic absorption
in CLC layer for S=0, 0.3, 0.5,1 (The curve thickness is growing with increase of S)
at Im[e]/Re[go] = 0.03, 8 =0.05, 1 =300

Fortunately, an analytical solution can be found
for thick CLC layers and a sufficiently small A
ensuring the condition LIm(g) << 1. In this case, ® and
A are determined by the conditions gL=nm and the
EM life-times at the case of isotropic absorption may
be presented as:

Tom= /Ao gy = 2/0 pm[8(nm)’/(78Lp)’ +v1,  (6)

where the integer number 7 is the edge mode number
[15] (n = 1 corresponds EM frequency (reflection
coefficient minimum) closest to the stop-band edge)

and y is the parameter determining the isotropic
fraction of absorption in CLC. So, in the case of
isotropic absorption the localized mode life-time is
limited by 2/®g\y.

In the case of a locally anisotropic absorption in
CLC the EM life-time depends on the EM frequency
position relative to the stop-band center and may
exeed the value given by Eq. (6) due to the Bormann
effect. For example, if the CLC layer thickness L is
sufficiently large and the condition LIm(g) << 1 holds
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the ratio of life-times at the opposite stop band edge
frequencies may be estimated by the following
expression:

T8/TaB = [@Em EI(1 + 55)/3 +

+ 1/t wl/(0pm &1(1 = S)/3 + 1/t ), @)

where 1g, Tap, T m, are the life-time at the stop-band
edge where the Bormann effect happens, at the
opposite edge, at the edges in the case of non-
absorbing CLC (see (6) at y = 0), respectively, and vy is
determining the isotropic component of absorption . If
v.is approaching zero what is happening when the
order parameter is approaching 1 (if we neglect all
sources of absorption except the dye molecules) 1y is
coinciding with t ,, given by (6) at y = 0 what
corresponds suppression of absorption for EM at the
stop-band edge frequency in the case of CLC with
local anisotropy of absorption. Note, to be accurate,
that a complete suppression of absorption for EM is
achievable in the limit of infinity thick CLC layer
only. At the opposite stop-band edge frequency the
absorption is enhanced and the EM life-time being
proportional to 1/2 g Imd- is shorter than 1,,.

The Fig. 9 presents the calculated according Eq.
(7) dependence of the life-times ratio of the first EM at
the high and low frequency stop band edge on the
value of the order parameter S for several values of the
layer thickness. It shows that the growth of the the EM
life-time at S = 1 due to the Bormann effect at one stop
band edge compared to the opposite one disappears at
S = 0 and the suppression of absorption (the Bormann
effect) is growing with the layer thickness L increase.

What is concerned of the luminescence spectra
if the dye absorption line overlaps with the stop-band

the intensity of the luminescence is enhanced for the
pump wave frequency at the stop band edge
corresponding to the shorter EM life-time and
suppressed for the pump wave frequency at the stop
band edge corresponding longer EM life-time. That
gives the estimate of the pumping wave intensity ratio
ensuring equal luminescence intensity for the pump
wave frequency coinciding with the opposite stop-
band edges according to the Eq. (7) i.e. Ig/ Iap =
Ta/TaB, Where Ip/ I5p are the pumping wave intensities
ensuring equal luminescence intensity at the opposite
stop band edges.

4. Lasing threshold at local anisotropy of
absorption

The reflection, transmission and absorption
spectra studied above give hints that the DFB lasing in
the case of a locally anisotropic absorption in CLC is
also significantly influenced by the anisotropy. To
study the lasing threshold we have to solve dispersion
equation at the EM frequency relative to the negative
imaginary part of dielectric tensor.

The imaginary addition to dielectric tensor in the
case of assumed absorption isotropy may be taken into
account by introducing into the dielectric tensor a
factor of the form (1 — ig) where g is a small positive
quantity. In the case of nonabsorbing CLC the
threshold problem was studied in [15] and in the limit
of a thick CLC layer the threshold is given by the
following expression:

g=38(nn)*/ (8Lt / 4)’. (8)

LIFETIME RATIO

=

OEDER PARAMETER

Fig. 9. Calculated life-times ratio of the first EM at the high and low frequency stop band
edges versus the value of the order parameter S for locally anisotropic absorption Im[g;] = 0.015,
Im[e;] = 0 (see Egs. (1)), 6 =0.05, L/(p/6) = 1; 2; 2,5 (the curves from the bottom to top)
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In the case of isotropically absorbing CLC in the same
limit the threshold is given by the next expression:

g=38mn)*/ (8Lt /4)’ +v, 9)

where v is a small positive parameter determining the
isotropic absorption in CLC .

So, naturally, the threshold gain becomes higher if
an absorption in the CLC exists. In the case of a locally
anisotropic absorption the values of the threshold gain
are dependent on the order parameter S and are different
for the EM frequencies at the opposite stop-band edges.
At one edge (where the Bormann effects reveals) it may
approach to the value given by the Eq. (8) and at the
opposite stop-band edge the threshold gain may be
essentially higher. If the absorption is due only to the dye
molecules the threshold gain becomes dependent on the
order parameter S and its minimal value is given by the
following expression

g=38(nm)’/ (8Lt /4)* +&/(1 — S)/3Re[eo] ,  (10)
where €, is the imaginary part of the dielectric tensor
principal value at S = 1 determined by the dye
molecules absorption i.e. under the assumption that the
CLC absorption is due exclusively to the dye
molecules.

Note, that anomalously strong absorption effect
[11, 17] at the frequency of pumping wave may
influence the lowering of lasing threshold gain in the
case of a locally anisotropic absorption in CLC even
stronger than in the case of an isotropic absorption
[18, 19]. Really, if the absorption oscillators (at the
pumping wave frequency) in the dye molecules and
the oscillators corresponding to the lasing frequency
have the same orientations the lasing wave absorption
will be suppressed and the pumping wave absorption
will be enhanced if the lasing frequency coincides
with the low frequency stop-band edge where the
Bormann effect takes place and the pumping wave
frequency coincides with the high frequency stop-band
edge where the absorption is enhanced.

5. Conclusion

In the proceeding sections the influence of the
Bormann effect (studied previously for CLC
transmission and reflection spectra [11-14]) on the
properties of the edge modes in the case of local
absorption anisotropy in CLC was studied in the first

time. The performed analytical description of the EM
(neglecting the polarization mixing) allows one to
reveal typical EM features related to existence of a
local absorption anisotropy in CLC. For example,
dependence of the EM mode live-time and lasing
threshold on the position of EM mode frequency
relative to the stop-band edges.

The results obtained here for the EM (see also
[20]) clarify the physics of the absorption suppression
due to the Bormann effect and the dependence of the
EM life-times on their frequency positions relative to
the stop-band edges. The predictions formulated above
(for example, on different lasing threshold at the lasing
frequencies at opposite stop-band edges) are open for
an experimental verification and may be used for the
optimization of experiments related to the DFB lasing
in CLC. As a positive specific of the corresponding
experiments in CLCs should be mentioned the option
to study lasing at the opposite stop-band edges without
actual changing the lasing frequency changing instead
of this the CLC pitch by temperature variations or by
application of magnetic or electric field at LCL.

The studied above Bormann effect influence on
the CLC layer absorption spectra predicts new options
for experimental investigation of this effect by the
means of the luminescence technique (or vice versa to
study the luminescence under the conditions of the
Bormann effect realization). And here the most
pronounced effect is the dependence of the
luminescence intensity on the pumping wave
frequency coincidence with the opposite stopband
edge frequencies (at one stopband edge the
luminescence is enhanced and at the opposite stopband
edge is suppressed).

Note, that the obtained results are qualitatively
applicable to the corresponding localized electro-
magnetic modes in any periodic media, and may be
regarded as a useful guide in the studies of the
localized modes under the conditions of the Bormann
effect existence. For example, the results related to
CLCs with local anisotropy of absorption may be
useful for optimizing of DFB lasing in general. Really,
the corresponding theoretical predictions show which
one of the two stop-band frequencies is preferable for
obtaining the most lower lasing threshold.

The work is supported by the RFBR grants
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