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The edge optical modes in spiral photonic liquid crystals are theoretically studied for the certainty on the 
example of chiral liquid crystals (CLCs) with an anisotropic local absorption. The model chosen here (absence of 
dielectric interfaces in the studied structures) allows one to get rid off the polarization mixing at the surfaces of 
the CLC layer and to reduce the corresponding equations to the equations for the light of diffracting in the CLC 
polarization only. The dispersion equation determining connection of the edge mode (EM) frequencies with the 
CLC layer parameters (anisotropy of local absorption, CLC order parameter) is obtained. Analytic expressions 
for the transmission and reflection coefficients of CLC layer for the case of CLC with an anisotropic local 
absorption are presented and analyzed. It is shown that the CLC layers with locally anisotropic absorption reduce 
the EM lifetimes (and increase the lasing threshold) by the way different from the case of CLC with an isotropic 
absorption. Due to the Bormann effect revealing of which is different at the opposite stop-band edges in the case 
of CLC layers with an anisotropic local absorption the EM life-times for the EM frequencies at the opposite stop-
bans edges may be significantly different. The options of experimental observations of the theoretically revealed 
phenomena are briefly discussed.  

Key words: chiral liquid crystals, edge modes, low threshold lasing, local absorption anisotropy, Bormann 
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Теоретически изучены краевые оптические моды в спиральных фотонных жидких кристаллах на 

примере хиральных жидких кристаллов (CLCs) с локальной анизотропией поглощения. Использованная 
модель (отсутствие диэлектрических границ в изучаемых структурах) позволяет пренебречь 
преобразованием поляризаций на границах CLC слоев и свести соответствующие уравнения к уравнениям 
для света только дифрагирующей в CLC поляризации. Получено дисперсионное уравнение, связывающее 
частоты краевых мод (EM) с параметрами CLC слоя (локальная анизотропия поглощения, параметр 
порядка в CLC). Получены и проанализированы аналитические выражения для коэффициентов 
прохождения и отражения CLC слоя в случае CLC с локальной анизотропией поглощения. Показано, что 
в CLC слоях с локальной анизотропией поглощения уменьшается время жизни EM (и возрастает порог 
лазерной генерации) не так, как в случае CLC с изотропным поглощением. Время жизни EM с частотами 
на противоположных частотных границах запрещенной для распространения света зоны может 
оказаться существенно различным из-за проявления эффекта Бормана в CLC слоях с локальной 
анизотропией поглощения. Кратко обсуждаются перспективы экспериментального наблюдения 
теоретически выявленных эффектов.  

Ключевые слова: хиральные жидкие кристаллы, краевые моды, низкопороговая лазерная  
генерация, локальная анизотропия поглощения, эффект Бормана. 
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1. Introduction 

 
Recently there have been much activities in the 

field of localized optical modes, in particular, edge 
modes (EM) and defect modes (DM) in chiral liquid 
crystals (CLCs) mainly due to the possibilities to reach 
a low lasing threshold for the mirror less distributed 
feedback (DFB) lasing [1–4] in CLCs. The EMs 
existing as localized electromagnetic eigenstates with 
its frequency close to the forbidden band gap were 
investigated initially in the periodic dielectric 
structures [5]. The corresponding EMs in CLCs, and 
more general in spiral media, are very similar to the 
EMs in one-dimensional scalar periodic structures. 
They reveal abnormal reflection and transmission 
[1, 2], and allow distributed feedback (DFB) lasing at 
a low lasing threshold [3]. 

Almost all theoretical studies of the EM and 
DM in chiral and scalar periodic media were 
performed by means of a numerical analysis with the 
exceptions [6, 7] where the known exact analytical 
expression for the eigenwaves propagating along the 
helix axis [8–10] were used for a general study of the 
DM. The approach used in [6, 7] looks as fruitful one 
because it allows to reach an easy understanding of the 
DM and EM physics, and this is why it deserves 
further implementation in the study of the EM and 
DM. 

In the cited studies the optical absorption in 
CLC was regarded as an isotropic. However  the case 
of isotropic absorption in CLC does not cover all 
options happening in CLC. For example, quite 
common is alignment of dye molecules in liquid 
crystals with clearly presented absorption lines. If the 
director distribution in a liquid cryson in the sample 
may exist and manifest itself in some circumstances 
[11, 12]. The corretal sample is not homogeneous 
(what is the case of CLC) a local anisotropy of 
absorptisponding effects depend on the value of liquid 
crystal order parameter and disappear if the order 
parameter value is zero, i.e. at the point of  liquid 
crystal phase transition to liquid. The corresponding 
effects in the CLC transmission and reflection spectra, 
in particular Bormann effect, were studied both 
experimentally [13, 14] and theoretically [11, 12, 13]. 
In the present paper the influence of local anisotropy 
of absorption on characteristics of localized modes is 
theoretically studied. Below analytical solutions for 
the EM (associated with a local anisotropy of 
absorption in CLCs) are presented and some limiting 
cases simplifying the problem are considered. 
 

2. The Boundary-Value Problem 
 

To investigate EM in a CLC we have to 
consider a boundary problem, i.e. transmission and 
reflection of light incident on a CLC layer along the 
spiral axis [10–12]. We assume that the CLC is 
represented by a planar layer with a spiral axis 
perpendicular to the layer surfaces (Fig.1). We also 
assume that the average CLC dielectric constant 
coincides with the dielectric constant of the ambient 
medium. This assumption practically prevents 
conversion of one circular polarization into another at 
the layer surfaces [11, 12], and allows to have only 
two eigenwaves with diffracting circular polarization 
taken into account. 

The procedure of obtaining the reflection R and 
transmission T coefficients for a CLC layer with a 
local anisotropy of absorption is similar to the one for 
a non-absorbing CLC however some complications 
arise due to the fact that the elements of CLC 
dielectric tensor are complex quantities now. 

Let us begin from discussing of the dielectric 
tensor of a substance with locally anisotropic 
absorption. The principal values of corresponding 
dielectric tensor are complex and have different 
imaginary parts depending in the case of CLC on the 
liquid crystal order parameter S [10]. In general case 
all three imaginary parts are different. For a CLC the 
imaginary parts are different  for S = 1 and are equal 
for S = 0. Returning to the CLC we assume for 
simplification of the problem that only one principal 
value of dielectric tensor is complex at S = 1. This 
corresponds to the assumption that the absorption in 
CLC is due only to dye's molecules and at S = 1 a 
complete ordering of the dye's molecules occurs. We 
assume also that the axis corresponding to the real 
principal value of the dielectric tensor is directed 
along the spiral axis and two other axes are rotating 
around the spiral axis. These rotating axes determine 
the local, depending on the coordinate along spiral 
axis, direction of absorption anisotropy. Now we have 
to insert complex principal values of dielectric tensor 
in the expressions for dielectric anisotropy 
[11, 12, 15]. As the result the dielectric anisotropy Δε 
(see below) becomes a complex quantity. Luckily, the 
expressions for reflection and transmission 
coefficients for light propagating in a CLC layer along 
the cholesteric axis [11, 12, 15] are exact and are 
applicable to the case of anisotropic absorption which 
is under consideration here. 
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Under the accepted assumption the imaginary 
parts of principal values of the dielectric tensor for S 
differing from one are by the following way expressed 
via the imaginary part of the single complex principal 
value ε1, or ε2  at S = 1 for  the cases of absorption 
oscillatory axis parallel and perpendicular to the long 
molecular axis, respectively:  

Im[ε||] = Im[ε1](1+2S)/3,  Im[ε] = Im[ε1](1–S)/3   (1a) 

and the local dielectric anisotropy is 

Δε = ε|| – ε = Re[ε|| – ε ]+ iε1 S,             (2a) 

for the oscillatory axis parallel to the long molecular 
axis; 

Im[ε] = Im[ε2](1+2S)/3,  Im[ε||] = Im[ε2](1 – S)/3 (1b) 

and the local dielectric anisotropy is 

Δε =ε|| – ε =Re[ε|| – ε ] – iIm[ε2]S.          (2b) 

for the oscillatory axis perpendicular to the long 
molecular axis. 

In what will be followed below we shall present 
the results related to the first option, for the case of 
absorption oscillatory axis parallel to the long 
molecular axis. If for the first option the Bormann 
effect reveals itself close to the high frequency stop-
band edge, for the second option a similar revealing of 
the Bormann effect happens close to the low frequency 
stop-band edge [11, 12]. 

In the view of refs. [10–12, 15, 16], we state 
here only the final expressions for the amplitude 
transmission T and reflection R coefficients for light 
incident on a CLC layer of thickness L. These are 
given as 

R(L) = δsinqL/{(qτ/κ2)cosqL +  

+ i[(τ/2κ)2 + (q/κ)2 – 1]sinqL}                        (3a) 

T(L) = exp[iκL](qτ/κ2)/{(qτ/κ2)cosqL + 

+ i[(τ/2κ)2 + (q/κ)2 – 1]sinqL},                     (3b) 

where 
q = κ{1 + (τ/2κ)2 – [(τ/κ)2 + δ2 ]1/2 }1/2         (4) 

and, ε0 = (1 + iγ)Re[ε|| + ε ]/2,  δ = Re[ε|| – ε ]/Re[ε0] + 
+ iε1S/Re[ε0] and γ = ε1(1 – S)/3Re[ε0] is the parameter 
describing the locally isotropic part of absorption. 
Here δ is the dielectric anisotropy with ε|| and ε as the 
local principal values of the CLC dielectric tensor 
[10–12], k = ωε0

1/2/c with c as the speed of light, and   
τ = 4/p with p as the cholesteric pitch. 

Note, that in the case of absorption due solely to 
the dye molecules solved  in  CLC only  one  principal  
 

value of dielectric tensor is complex at S = 1 if the 
absorption oscillators of dye molecules are directed 
along a sole axis in the molecule and the  degree of 
orientational order of the dye molecules is the same as 
for CLC. In principle, the orientational order  
parameter for dye molecules may be different from the 
CLC order parameter S. 
 

 
 
Fig. 1.  Schematic of the boundary problem for edge mode 

 
As one expects the CLC local absorption 

anisotropy reveals itself in the reflection and 
transmission spectra due to the Bormann effect (well 
known in the X-Ray diffraction ) [11, 12, 13] revealing 
itself in the absorption suppression at one of the stop 
band edges. Contrary to the case of isotropic 
absorption with the reflection and transmission spectra 
being symmetric relative the stop band centre in the 
case of locally anisotropic absorption in CLC the 
spectra are nonsymmetric relative the stop band 
centre. In the case of the CLC with a locally 
anisotropic absorption [11, 12, 13] the absorption 
suppression at one of the stop band edges, as in the X-
ray case, also takes place and is due to orthogonally of 
the whole optical electric field in the sample to the dye 
molecular absorbing oscillators at the frequency of one 
stop band edge. The Figs. 2 and 3 demonstrate the 
Bormann effect in reflection and transmission, 
respectively, in a CLC layer with locally anisotropic 
absorption (the calculations performed according Eqs. 
(3) for the order parameter S = 1, however, here and 
below the notations R and T are different from the 
ones in the Eqs. (3) and relate to the intensity 
reflection and transmission coefficients).  

The Bormann effect demonstrates itself most 
clearly in the spectra of total absorption in a sample 
given by 1-R-T (see Fig. 4).  
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Fig. 2. Reflection (Thin curve corresponds to the complete absence of absorption) versus  

the dimensionless frequency ν =δ[2(ω – ωB)/(δωB) – 1] used also in all Figures below for locally  
anisotropic absorption in CLC layer (see Fig. 1) at δ = 0.05 +0.03i, l = 300 ( l = Lτ = 4N,  

where N is the director half-turn number at the CLC layer thickness L) 
 
 
 

 
 
 

Fig. 3. Transmission versus frequency for locally anisotropic absorption  
in CLC layer (see Fig. 1) at δ = 0.05 +0.015i, l = 300 
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Fig. 4. Total absorption 1-R-T versus frequency for locally anisotropic absorption  
in CLC layer (see Fig.1) at δ = 0.05 +0.015i, l = 300 

 
 
The Figs. 2–4 demonstrate increasing of  

reflection and transmission at one stop band edge 
compared to the other stop band edge and a strong 
suppression of the absorption at this stop band edge. 
To illustrate the dependence of the Bormann effect on 
the value of the order parameter S the Figs. 5, 6 
present the calculation results for the reflection and 
total absorption 1-R-T for the values  of  S = 1, 0.5, 
0.3, 0, respectively. These figures show that the 
suppression of absorption effect is decreasing with 
decrease of the CLC order parameter S. Here should 
be mentioned that in the above calculations was 
assumed that the pitch value and δ are the same for all 
values of S which means that the accepted assumption 
allows the dye molecules order parameter variations to 
be different from the corresponding variations of the 
CLC molecule's order parameter. In real situations the 
variations of the order parameter is connected usually 
with the temperature variations (and as it is known the 
pitch is a temperature dependent CLC parameter). The 
Fig. 7 demonstrates that the total absorption at the EM 
frequency decreases with the CLC layer thickness 
increase (L at the Fig. 7 is 10 times larger than at the 
Fig. 6). The Fig. 8 demonstrates that the transmission 
T at the EM frequency decreases with the CLC  order 
parameter S increase and a more pronounced decrease 
happens at the stop-band edge opposite to the edge 
where the reflection is increased due to the Bormann 
effect. 

The calculated at Figs. 6,7 absorption spectra are 
directly related to the luminescence spectra if the dye 
absorption line overlaps with the stop-band. Because 
the absorbed optical photons of the incident beam are 
reemitted as luminescence photons the absorption 
maximum results in a luminescence intensity 
maximum, naturally, at the frequency being shifted in 
the direction of lower frequencies. By this way the 
luminescence spectra occurred to be dependent on the 
local absorption anisotropy revealing different  
luminescence intensity for the pumping wave 
frequency coinciding with the opposite stop-band 
edges frequencies. 

 
3. Edge mode influenced by local absorption 

anisotropy 
 

In a non-absorbing CLC γ = 0 in the general 
expression for the dielectric constant ε = ε0(1 + iγ). 
The calculations of the reflection and transmission 
coef-ficients as functions of the frequency give the 
well-known results [8–12] different from the curves 
pre-sented at the Figs. 3–6 , in particular, at γ = 0 
T + R  = 1 for all frequencies. Let us study how a 
locally anisotropic absorption in CLC influences on 
the properties of EM existing at discrete frequencies 
outside the stop band [15, 16], in particular, on the EM 
life-time. 
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To do this we have to solve the corresponding 

dispersion equation. Following the reference [15] one 
gets the dispersion  equation in the form similar to the 
case of  zero absorption  

tgqL = i(qτ/κ2)/[(τ/2κ)2 + (q/κ)2 – 1],             (5) 

however the entering in this equation parameters occur 
to be given by the Eqs. (1,2,4), i.e. are dependent on 
some additional quantities compared to the case of 
zero absorption.  

Generally, solutions to Eq. (5) are discrete EM 

frequencies ωEM situated outside of the stopband edges 
which may be found only numerically. The EM 
frequencies ωEM turn out to be complex and may be 
presented as  ωEM = ω (1 + i∆) where in real situations  
∆ is a small parameter determining the EM life-time. 
From a general analysis of Eq. (5) one concludes that 
the EM life-times at the frequencies outside the 
opposite stop band edges are different in the case of 
locally anisotropic absorption (there is no symmetry in 
their values relative to the stop band centre). 

 

 
 

Fig. 5. Reflection for a CLC layer with local anisotropy of absorption versus  
the frequency for S = 0, 0.3, 0.5,1 (The curve thickness is growing with increase of S)  

at Im[ε1]/Re[ε0] = 0.03, δ = 0.05, l = 300, (The thinnest curve corresponds  
to complete absence of absorption) 

 

 
 

Fig. 6. Absorption for a CLC layer with local anisotropy of absorption versus  
the frequency for S = 0, 0.3, 0.5,1 (The curve thickness is growing with increase of  S)  

at  Im[ε1]/Re[ε0] = 0.03, δ = 0.05, l = 300 
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Fig. 7. Absorption for a CLC layer with local anisotropy of absorption versus  
the frequency for S = 0, 0.3, 0.5,1 (The curve thickness is growing with increase of  S)  

at  Im[ε1]/Re[ε0] = 0.03, δ = 0.05, l = 3000 
 

 
 

Fig. 8. CLC layer transmission versus frequency for locally anisotropic absorption  
in CLC layer for S = 0, 0.3, 0.5,1 (The curve thickness is growing with increase of  S)  

at  Im[ε1]/Re[ε0] = 0.03, δ = 0.05, l = 300 
 
 

Fortunately, an analytical solution can be found 
for thick CLC layers and a sufficiently small ∆ 
ensuring the condition LIm(q) << 1. In this case, ω and 
∆ are determined by the conditions qL=n  and  the 
EM life-times at the case of isotropic absorption may 
be presented as: 

τEM = 1/∆ω EM = 2/ω EM[δ(n) 2/(δLp)3 + γ],       (6) 

where the integer number n is the edge mode number 
[15] (n = 1 corresponds EM frequency (reflection 
coefficient  minimum)  closest  to the  stop-band edge)  
 

and γ is the parameter determining the isotropic 
fraction of absorption in CLC. So, in the case of 
isotropic absorption the localized mode life-time is 
limited by 2/ωEMγ.  

In the case of a locally anisotropic absorption in 
CLC the EM life-time depends on the EM frequency 
position relative to the stop-band center and may 
exeed the value given by Eq. (6) due to the Bormann 
effect. For example, if the CLC layer thickness L is 
sufficiently large and the condition LIm(q) << 1 holds 
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the ratio of life-times at the opposite stop band edge 
frequencies may be estimated by the following 
expression: 

τB/τAB = [ωEM ε1(1 + 5S)/3 + 
+ 1/τ m]/(ωEM ε1(1 – S)/3 + 1/τ m),         (7) 

where τB, τAB, τ m are the life-time at the stop-band 
edge where the Bormann effect happens, at the 
opposite edge, at the edges in the case of non-
absorbing CLC (see (6) at γ = 0), respectively, and γ is 
determining the isotropic component of absorption . If 
γ is approaching zero what is happening when the 
order parameter is approaching 1 (if we neglect all 
sources of absorption except the dye molecules) τB is 
coinciding with τ m given by (6) at γ = 0 what 
corresponds suppression of absorption for EM at the 
stop-band edge frequency in the case of CLC with 
local anisotropy of absorption. Note, to be accurate, 
that a complete suppression of absorption for EM is 
achievable in the limit of infinity thick CLC layer 
only. At the opposite stop-band edge frequency the 
absorption is enhanced and the EM life-time being 
proportional to 1/2 ε0 Imδ  is shorter than τm. 

The Fig. 9 presents the calculated according Eq. 
(7) dependence of the life-times ratio of the first EM at 
the high and low frequency stop band edge on the 
value of the order parameter S for several values of the 
layer thickness. It shows that the growth of the the EM 
life-time at S = 1 due to the Bormann effect at one stop 
band edge compared to the opposite one disappears at 
S = 0 and the suppression of absorption (the Bormann 
effect) is growing with the layer thickness L increase. 

What is concerned of the luminescence spectra 
if the dye absorption line overlaps with the stop-band  

the intensity of the luminescence is enhanced for the 
pump wave frequency at the stop band edge 
corresponding to the shorter EM life-time and 
suppressed for the pump wave frequency at the stop 
band edge corresponding longer EM life-time. That 
gives the estimate of the pumping wave intensity ratio  
ensuring equal luminescence intensity for the pump 
wave frequency coinciding with the opposite stop-
band edges according to the Eq. (7) i.e. IB/ IAB = 
τB/τAB, where  IB/ IAB  are the pumping wave intensities 
ensuring equal luminescence intensity at the opposite 
stop band edges. 

 
4. Lasing threshold at local anisotropy of 

absorption 
 

The reflection, transmission and absorption 
spectra studied above give hints that the DFB lasing in 
the case of a locally anisotropic absorption in CLC is 
also significantly influenced by the anisotropy. To 
study the lasing threshold we have to solve dispersion 
equation at the EM frequency relative to the negative 
imaginary part of dielectric tensor. 

The imaginary addition to dielectric tensor in the 
case of assumed absorption isotropy may be taken into 
account by introducing into the dielectric tensor a 
factor of the form (1 – ig) where g is a small positive 
quantity. In the case of nonabsorbing CLC the 
threshold problem was studied in [15] and in the limit 
of a thick CLC layer the threshold is given by the 
following expression:  

 
g = δ(n)2 / (δLτ / 4)3.                      (8)  

 

 
Fig. 9. Calculated life-times ratio of the first EM at the high and low frequency stop band  

edges versus the value of the  order parameter S for locally anisotropic absorption Im[ε1] = 0.015,  
Im[ε2] = 0 (see Eqs. (1)), δ = 0.05, L/(p/δ) = 1; 2; 2,5 (the curves from the bottom to top) 
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In the case of isotropically absorbing CLC in the same 
limit the threshold is given by the next expression: 

g = δ(n)2 / (δLτ / 4)3 + γ ,                  (9) 

where γ is a small positive parameter determining the 
isotropic absorption in CLC . 

So, naturally, the threshold gain becomes higher if 
an absorption in the CLC exists. In the case of a locally 
anisotropic absorption the values of the threshold gain 
are dependent on the order parameter S and are different 
for the EM frequencies at the opposite stop-band edges. 
At one edge (where the Bormann effects reveals) it may 
approach to the value given by the Eq. (8) and at the 
opposite stop-band edge the threshold gain may be 
essentially higher. If the absorption is due only to the dye 
molecules the threshold gain becomes dependent on the 
order parameter S and its minimal value is given by the 
following expression 

g = δ(n)2 / (δLτ / 4)3 + ε1(1 – S)/3Re[ε0] ,       (10) 

where ε1 is the imaginary part of the dielectric tensor 
principal value at S = 1 determined by the dye 
molecules absorption i.e. under the assumption that the 
CLC absorption is due exclusively to the dye 
molecules. 

Note, that anomalously strong  absorption effect 
[11, 17] at the frequency of pumping wave may 
influence the lowering of lasing threshold gain in the 
case of a locally anisotropic absorption in CLC even 
stronger than in the case of an isotropic absorption 
[18, 19]. Really, if the absorption oscillators (at the 
pumping wave frequency) in the dye molecules and 
the oscillators corresponding to the lasing frequency 
have the same orientations the lasing wave absorption 
will be suppressed and the pumping wave absorption 
will be enhanced if the lasing frequency coincides 
with the low frequency stop-band edge where the 
Bormann effect takes place and the pumping wave 
frequency coincides with the high frequency stop-band 
edge where the absorption is enhanced.  
 

5. Conclusion 
 

In the proceeding sections the influence of the 
Bormann effect (studied previously for CLC 
transmission and reflection spectra [11–14]) on the  
properties of the edge modes in the case of local 
absorption anisotropy in CLC was studied in the first 

time. The performed analytical description of the EM 
(neglecting the polarization mixing) allows one to 
reveal typical EM features related to existence of a 
local absorption anisotropy in CLC. For example, 
dependence of the EM mode live-time and lasing 
threshold on the position of EM mode frequency 
relative to the stop-band edges. 

The results obtained here for the EM (see also 
[20]) clarify the physics of  the absorption suppression 
due to the Bormann effect and the dependence of the 
EM life-times on their frequency positions relative to 
the stop-band edges. The predictions formulated above 
(for example, on different lasing threshold at the lasing 
frequencies at opposite stop-band edges) are open for 
an experimental verification and may be used for the 
optimization of experiments related to the DFB lasing 
in CLC. As a positive specific of the corresponding 
experiments in CLCs should be mentioned the option 
to study lasing at the opposite stop-band edges without 
actual changing the lasing frequency changing instead 
of this the CLC pitch by temperature variations or by 
application of magnetic or electric field at LCL.  

The studied above Bormann effect influence on 
the CLC layer absorption spectra predicts new options 
for experimental investigation of this effect by the 
means of the luminescence technique (or vice versa to 
study the luminescence under the conditions of the 
Bormann effect realization). And here the most 
pronounced effect is the dependence of the 
luminescence intensity on the pumping wave 
frequency coincidence with the opposite stopband 
edge frequencies (at one stopband edge the 
luminescence is enhanced and at the opposite stopband 
edge is suppressed). 

Note, that the obtained results are qualitatively 
applicable to the corresponding localized electro-
magnetic modes in any periodic media, and may be 
regarded as a useful guide in the studies of the 
localized modes under the conditions of the Bormann 
effect existence. For example, the results related to 
CLCs with local anisotropy of absorption may be 
useful for optimizing of DFB lasing in general. Really, 
the corresponding theoretical predictions show which 
one of the two stop-band frequencies is preferable for 
obtaining the most lower lasing threshold. 
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