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The localized optical modes in chiral liquid crystals are theoretically investigated. Since the 

cholesteric liquid crystals (CLC) demonstrate common for all chiral liquid crystals optical properties 

the studying of the problem is performed for the certainty on the CLCs example. A brief survey of the 

recent experimental and theoretical results on the low threshold distributed feedback (DFB) lasing in 

chiral liquid crystals as well as new original theoretical data on the localized optical modes in CLC 

(edge (EM) and defect (DM)) related to the anomalously strong absorption (amplification) of light at 

the frequencies of EM and DM  are presented. An analytic approach to the theory of the EM and DM 

optics in CLC is developed. The dispersion equations determining connection of the EM and DM 

frequencies with the CLC layer parameters and other parameters of the defect structure (DMS) are 

obtained. Analytic expressions for the transmission and reflection coefficients of the DMS are 

presented and analyzed. As specific cases DMS with an active defect layer are considered, i.e. the 

DMS with birefringent, absorbing and amplifying defect layers in a perfect CLC structure.

Key words: chiral liquid crystals, edge modes, defect modes, low threshold DFB lasing. 
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1. Introduction 

Recently there was a very intense activity in the field of localized optical modes, in 

particular, edge (EM) and defect (DM) modes in chiral liquid crystals (CLC) mainly due to 

the possibilities to reach a low lasing threshold for the mirrorless distributed feedback (DFB) 
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lasing [1–4] in chiral liquid crystals.  The EM and DM existing as a localized electromagnetic 

eigen state with its frequency close to the forbidden band gap or in the forbidden band gap, 

respectively, were investigated initially in the periodic dielectric structures [5]. The 

corresponding EM and DM in chiral liquid crystals, and more general in spiral media, are 

very similar to the EM and DM in one-dimensional scalar periodic structures. They reveal 

abnormal reflection and transmission [1, 2] and allow DFB lasing at a low lasing threshold 

[3].  Almost all studies of the EM and DM in chiral and scalar periodic media were performed 

by means of a numerical analysis with the exceptions [6, 7], where the known exact analytical 

expression for the eigen waves propagating along the helix axis [8, 9] were used for a general 

studying of the  DM. The used in [6, 7] approach looks as a very fruitful one because it allows 

to reach easy understanding of the DM and EM physics and it is why it deserves further 

implementation in the studying of the EM and DM at the base of well developed theory of the 

CLC optics [10–13]. In the present paper analytical solutions of the EM and DM mode 

(associated with an insertion of a layer in the perfect cholesteric structure) are presented and 

some limiting cases simplifying the problem are considered. Because the cases of EM and 

DM at an isotropic defect structure (DMS) were already studied (see, [14–16]) we shall 

present here the results related to a DMS  with an active defect layer (birefringent, absorbing 

or amplifying). 

Recently a lot of new types of defect layer were studied [17–23]. The consideration 

below will be limited by a birefringent or absorbing (amplifying) layer inserted in a chiral 

liquid crystal. The reason for that is connected  as with the experimental [22, 24] and 

theoretical [23, 25, 26] researches of the  DFB lasing in CLC where a defect layer is 

birefringent or absorbing (amplifying)  so with a general idea that the unusual properties of 

DM manifest themselves most clearly just at the middle of DMS, i.e. at  defect layer where 

intensity of the DM field reaches its maximum. The analytic approach in studying of a DMS 

with a birefringent or absorbing (amplifying) defect layer is very similar to the previously 

performed DM studies for isotropic defect layer [15, 27], so we shell present below the final 

results of the present investigation sending the readers for the investigation details to 

references [15, 27 ].

In the following sections the dispersion equation and analytical expressions for 

transmission and reflection coefficients for the defect mode associated with an insertion of a 

birefringent or absorbing (amplifying) defect layer in the perfect cholesteric structure are 

presented for light propagating along the helical axes.

2. Defect  mode  at birefringent defect layer

Nonabsorbing CLC layers
To consider the DM associated with an insertion of a birefringent layer in the perfect 

cholesteric structure we have to solve Maxwell equations and a boundary problem for 

electromagnetic wave propagating along the cholesteric helix for the layered structure 

depicted at fig.1. Exploiting results obtained in [28] (and using the same simplifications) one 

easily gets the results related a birefringent layer. For example, if one neglects the multiple 

scattering of light of nondifracting in CLC polarization the transmission T(d,L)
2
 and 

reflection R(d,L)
2
 intensity coefficients (of light of diffracting circular polarization) for the 

whole structure may be presented in the following form: 

T(d,L)
2
= [TeTdM(k,d, n)( e ed* )]/[1– M

2
(k,d, n)( r ed* )

2
RdRu]

2
,                (1) 
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R(d,L)
2
= {Re+Rd TeTu M

2
(k,d, n) ( e ed* )

2
/[1–M

2
(k,d, n)( r ed* )

2
RdRu]}

2
,     (2) 

where L is the CLC layer thickness, Re(Te), Ru(Tu) and Rd(Td) [16, 30] are the amplitude 

reflection (transmission) coefficients of the individual CLC layer (see fig. 1) for the light of 

diffracting polarization incident at the outer (top) layer surface, for the light incidence at the 

inner top CLC layer surface from the inserted defect layer and for the light incidence at the 

inner bottom CLC layer surface from the inserted defect layer, respectively, e, r and ed are

the polarization vectors of light exiting the CLC layer inner surface, reflected at the inner 

bottom CLC layer surface at the incidence from the inserted defect layer and of light whose 

some polarization vector ed transforms to the polarization vector e at crossing the 

birefringent  defect layer of thickness d, respectively, n is the difference of two refractive 

indexes in the birefringent  defect layer and M(k,d, n) is the phase factor related to light 

single propagation in a birefringent defect layer.  

CLC

CLC

L

L

d

Fig. 1. Schematic of the DMS with a birefringent defect layer 

The expressions for the amplitude transmission T and reflection R coefficients for circularly 

polarized light (of diffracting circularl polarization) incident at a CLC layer of thickness L are 

given by the following formula [14—16]: 

R = i sinqL/{(q /
2
)cosqL + i[( /2 )

2
+ (q/ )

2
– 1]sinqL},

T = exp[i L](q /
2
)/{(q /

2
)cosqL + i[( /2 )

2
+ (q/ )

2
– 1]sinqL  (3) 

where q = {1 + ( /2 )
2

– [( / )
2

+
2

]
½
}, 0 = ( + )/2,  = ( – )/( + ) is the dielectric 

anisotropy, and  , and are the local principal values of the CLC dielectric tensor [10–12], 

 = 0/c, c is the speed of light,  = 4 /p  and  p is the cholesteric pitch .

The corresponding polarization vectors in (1, 2) may be found (see [11, 12]) as well as 

the polarization vector ed may be easily calculated if the d, and n are known.  The 

calculation of the reflection and transmission coefficients according (1, 2) is performable 

analytically in the general case, however, it is rather cumbersome. It is why below will be 

studied in details the case of a low birefringence.

Under the mentioned above simplification and the assumption that the refractive 

indexes of the DMS external media coincides with the average CLC refractive index and the 

average refractive indexes of defect layer the refractive indexes of defect layer may be given 

by the formulas

nmax = n0 + n/2, nmin = n0 – n/2,                                                  (4) 
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where n0 coincides with the average CLC refractive index and n is small i. e. n/n0 < .  The 

phase difference of two beam component with different eigen polarization at the defect layer 

thickness is  = nkd/n0.

Finally, one gets the following expressions for reflection and transmission coefficients 

of light with a diffracting polarization for the incident beam with diffracting polarization in 

the case of low birefringence:  

T(d,L)
2
= [TeTdexp[ikd]cos(  /2)]/[1–exp[i2kd]cos

2
(  /2)RdRu]

2
,                   (5) 

R(d,L)
2
= {Re + Rd TeTu exp[i2kd]cos

2
(  /2)/[1– exp[i2kd]cos

2
(  /2)RdRu]}

2
       (6) 

The calculations results for transmission T(d,L)
2

coefficients of light of diffracting 

polarization for the case of low birefringence are presented at figs. 2 for various values  of  the 

birefringent phase factor . Figs. 2 show that at low values of phase shift between eigen 

waves at their crossing the defect layer (  < /2) the shape of transmission curve is very 

similar to those for DMS with an isotropic defect layer.  

a                                                                        b 

c

Fig. 2. Calculated diffracting polarization intensity transmission coefficient T(d,L) 2 for a low 

birefringent defect layer versus the frequency  (Here and at all other figures  = [2( – B)/( B) –1)],  

 = 0,05 and N = 33 is the director half-turn number at the CLC layer thickness L) for a diffracting 

incident polarization at the birefringent  phase shift at the defect layer thickness  

 = /20 (a),  = /6 (b),  = /2 (c), at d/p = 0,25 
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However, at approaching  to /2 (see figs. 2) typical for an isotropic defect layer increase 

of transmission at the defect mode frequency gradually disappears and at  = /2 (fig. 2, c)

does not appear at all. It is well known [13] that the position of the DM frequency in the stop 

band is determined by the frequency of the transmission (reflection) coefficient maximum 

(minimum) so the performed calculation of the transmission spectra (figs. 2) determine a real 

component of the DM frequency. However because DM is a quasistationary mode an 

imaginary component of the DM frequency is not zero [15, 27].  A direct way to find the 

imaginary component of the DM frequency is a solving of the dispersion equation. The 

dispersion equation if the multiple scattering of nondifracting polarization light being 

neglected is presented by the following relationship: 

  {M
2
(k,d, n)sin

2
qL – exp(-i L)[( q/

2
)cosqL + i(( /2 )

2
+(q/ )

2
– 1)sinqL]

2
/

2
]}=0.       (7) 

Amplifying and absorbing CLC layers
As the experiment [3] and the theory [15, 27] show  unusual  optical properties of 

DMS at the defect mode frequency D may be effectively used for enhancement of the DFB 

lasing. For studying how the birefringent defect layer does influence anomalously strong 

amplification and absorption effects we assume, as was done in [15, 27], that the average 

dielectric constant of CLC has an imaginary addition, i. e.  = 0(1 + i ) (note, that at real 

situations 1). The value of  ensuring the onset of the lasing threshold may be found from 

solution of the dispersion equation (7).  Another option (see [15, 27]) is  studying of reflection 

and transmission coefficients (5, 6) as a function of  .

For amplifying CLC the value of  corresponding to the divergence of DMS reflection 

and transmission coefficients just determines the solution of the dispersion equation (7) and 

also determines the threshold DFB lasing gain in the DMS (see [15, 27]). So, there is an 

option to finding the threshold value of  by calculating the DMS reflection and transmission 

coefficients at varying of  and finding its value at the points of DMS reflection and 

transmission coefficients divergence.  

According to the formulated approach figs. 3 presenting values of DMS transmission 

coefficient close to their divergence points demonstrate growth of the threshold DFB lasing 

gain ( ) with increase of the birefringent phase factor  and even disappearance of the 

divergence at defect mode frequency at  = /2.

For absorbing CLC layers in DMS the anomalously strong absorption effect reveals 

itself at the value of  ensuring a maximum of the total absorption in the DMS (see [15, 27]). 

For finite thicknesses of CLC layers L the DM frequency D occurs to be a complex quantity 

which may be found by a numerical solution of eq. (7). For a very small values of the 

parameter the reflection and transmission spectra of MDS with absorbing (amplifying) 

CLC layers are similar to the studied in [15, 27] spectra (see figs. 2). In particular, positions of 

dips in reflection and spikes in transmission inside the stop-band just correspond to Re[ D]

and this observation is very useful for numerical solution of the dispersion equation. What is 

concerned of the DM life-time it reduces for absorbing CLC layers compared to the case of 

nonabsorbing CLC layers [15, 27]. However, as the above formulas and figures show even for  

nonabsorbing CLC layers a reducing of the DM life-time  occurs due to a birefringent defect 

layer [28].
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a                                                                                    b 

c                                                                                        d

Fig. 3. Calculated intensity transmission  coefficients at a low birefringent defect layer  

for an amplifying CLC layer versus the frequency close to their divergence points  

for diffracting  incident polarization at  

 = /8,  = –0,00150 (a),     = /6,  = –0,002355(b),

 = /2,  = –0,004500 ( ),  = 0,  = –0,000675 (d);   d/p = 2,25 

3. Absorbing (amplifying) isotropic defect  layer 

The studying of the defect mode associated with an insertion of an absorbing 

(amplifying) isotropic layer (fig. 1) is performed in the same manner as above (see also [15, 

16, 27]). The transmission T(d,L)
2
 and reflection R(d,L)

2
 intensity coefficients (of light 

of diffracting circular polarization) for the whole structure may be presented in the following 

form: 

T(d,L)
2
= [TeTdexp(ikd(1 + ig))]/[1 – exp(2ikd(1 + ig)) RdRu]

2
,                          (8) 

R(d,L)
2
= {Re + Ru TeTuexp(2ikd(1 + ig))/[1 – exp(2ikd(1 + ig))RdRu]}

2
,           (9) 

where Re(Te), Ru(Tu) and Rd(Td) are determined above. The factor (1 + ig) is related to the 

defect layer only and corresponds to the dielectric constant of  the defect layer having the 

form 0(1 + 2ig) with a small g being positive for an absorbing defect layer and negative for 

an amplifying one. 

The defect mode frequency D is determined by the following dispersion equation: 

-0.125 -0.1 -0.075 -0.05 -0.025 0 0.025 0.05
FREQUENCY

0

50

100

150

200

d
-

e
d

o
m

N
O

I
S

S
I

M
S

N
A

R
T

-0.2 -0.1 0 0.1
FREQUENCY

0

10

20

30

40

50

60

70

d
-

e
d

o
m

N
O

I
S

S
I

M
S

N
A

R
T

-0.2 -0.1 0 0.1
FREQUENCY

0

1

2

3

4

5

d
-

e
d

o
m

N
O

I
S

S
I

M
S

N
A

R
T

-0.125 -0.1 -0.075 -0.05 -0.025 0 0.025 0.05
FREQUENCY

0

10

20

30

40

50

d-
e

d
o

m
N

O
I

S
S

I
M

S
N

A
R

T



V. A. Belyakov. Localized  optical  modes                                               59

{exp(2ikd(1 + ig))sin2qL – exp(–i L)[( q/ 2)cosqL + i(( /2 )2 + (q/ )2 – 1)sinqL]2 / 2]} = 0.   (10)                              

For finite thicknesses of CLC layers L D occurs to be a complex quantity which may be 

found by a numerical solution of (eq. 10). For very small values of the parameter g the 

reflection and transmission spectra of MDS with an active defect layer are similar to the 

studied in [15, 16, 27] spectra. In particular, positions of dips in reflection and spikes in 

transmission inside the stop-band just correspond to Re[ D]. What is concerned of the DM 

life-time it reduces for absorbing defect layers compared to the case of nonabsorbing defect 

layer [15, 16, 27]. 

As in the case of investigated DMS with absorbing CLC layers [15, 27] in DMS with 

an absorbing defect layer the effect of anomalously strong absorption takes place [29]. The 

effect reveals itself at the DM frequency and reaches its maximum (maximum of                  

1 – T(d,L)
2
– R(d,L)

2
 ) for definite value of g which  may be found using the expressions 

(8, 9). Figs. 4 demonstrate existence of the anomalously strong absorption effect. As follows 

from figs. 4 the maximum values of the anomalous absorption [11, 29] are reached for 

g = 0,04978 and g = 0,0008891 dependent on  the correspondent defect layer thickness d.

a                                                                               b 
   

c                                                                                   d 

Fig. 4. Total absorption versus the frequency for an absorbing defect layer and nonabsorbing CLC 

layers at g = 0,04978  for d/p = 0,1 (a), g = 0,08 (b), g = 0,00008891 for d/p = 22,25(c),

g = 0,0008891 for d/p = 22,25 (d)

In the case of thick CLC layers ( q L 1) in the DMS the g value ensuring absorption 

maximum may be found analytically.  For the defect mode frequency D  in the middle of 

stop-band the maximal absorption corresponds to 

gt = (2/3 )(p/d) exp[–2 (L/p)].                                                     (11) 
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As the calculations and the formulas (11) show the gain (g) corresponding to the 

maximal absorption is approximately inversely proportional to the defect layer thickness d.

In the case of DMS with amplifying defect layer (g<0) at some value of g  divergences of 

reflection and transmission coefficients occur. The corresponding values of g are the gain 

lasing thresholds. Their values may be found numerically using the expressions (8, 9) for 

T(d,L)
2
 and R(d,L)

2
 or  found approximately by plotting T(d,L)

2
 and R(d,L)

2
 at 

varying g. The second options is illustrated by figs. 5, 6, 7 where «almost divergent» values of 

T(d,L)
2
, R(d,L)

2
 or absorption (1– T(d,L)

2
 – R(d,L)

2
) are shown. The used values 

of g at figs. 5, 6, 7 are close to the threshold ones ensuring divergence of  T(d,L)
2
 and       

R(d,L)
2
.  The calculation results show that the minimal threshold g  corresponds to 

location of D just in the middle of the stop-band and g  is almost inversely proportional to 

the defect layer thickness. Really, the figs. 5, 6 correspond to location of  the defect mode 

frequency D  close to the  middle point of the stop band and demonstrate decrease of the 

lasing threshold gain with increase of the defect layer thickness.

Fig. 5. Total absorption  versus the frequency for amplifying  defect layer  

and nonabsorbing CLC layers at g = – 0,0065957 for d/p = 0,25 

a                                                                                           b 

Fig. 6.  T(d) versus the frequency for amplifying defect layer and nonabsorbing CLC layers  

at g = – 0,001000 for d/p = 2,25 (a), g = – 0,00008891 for d/p = 22,25 (b)

Figs. 7 correspond to location of the defect mode frequency D close to the stop band edge 

and demonstrates increase of the lasing threshold gain with approaching the defect mode 

frequency D  to the  stop band edge. The analytic approach for thick CLC layers ( q L 1) 

results in the similar predictions, namely, for D in the middle of the stop-band  the threshold 

value of gain is given by (11) with a negative sign of the right hand side of the expression. So, 

as the formula (11) shows the thinner defect layer is the higher is threshold gain g. The same 
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result, as was mentioned above, relates also to the absorption enhancement (formula (11)). 

The thinner defect layer is the higher is g value ensuring maximal absorption. 

Fig. 7. R(d) versus the frequency for amplifying defect layer  

and nonabsorbing CLC layers at g = – 0,04978 for d/p = 0,1 

4. Conclusion 

The performed analytical description of the EM and DM neglecting the polarization 

mixing at the boundaries allows one to reveal clear physical pictures of these modes which is 

applicable to the DM in general. For example, more low lasing threshold and more strong 

absorption at the DM frequency compared to the EM frequencies are the features of any 

periodic media. Note, that the experimental studies of the lasing threshold [3] agree with the 

corresponding theoretical result obtained above. Moreover, the experiment [3] confirms also 

the existence of some interconnection between the gain and other CLC parameters at the 

threshold pumping energy for lasing at the DM and EM frequencies. For a special choice of 

the parameters in the experiment the obtained formulas may be directly applied to the 

experiment. However, in the general case one has take into account a mutual transformation at 

the boundaries of the two circular polarizations of opposite sense. In the general case the EM 

and DM field leakage from the structure is determined as well by the finite CLC layer 

thickness so by the leakage due to the polarization conversion. Only for sufficiently thin CLC 

layers or in the case of the DM frequency being very close to the stop band frequency edges 

the main contribution to the frequency width of the EM and DM is due to the thickness effect 

and the developed above model may be directly applied for the describing of the experimental 

data. Note also that DMS with jumps of dielectric constants at interfaces (even for an 

isotropic defect layer) effectively may be regarded as a DMS with an active defect layer [30]. 

An important result relating to the DFB lasing at DMS with active defect layer may be 

formulated as the following. The lasing threshold gain in defect layer decreases with the layer 

thickness decrease being almost inversely proportional to its thickness. The similar result 

relates to the effect of anomalously strong absorption phenomenon where the value of gain in 

the defect layer ensuring a maximal absorption is almost inversely proportional to the defect 

layer thickness. Note that the obtained above results are qualitatively applicable to the 

corresponding localized electromagnetic modes in any periodic media and may be regarded as 

a useful guide in the studies of the localized modes with an active defect layer in general. 

It should be mentioned also that the localized DM and EM reveal themselves in an 

enhancement of some inelastic and nonlinear optical processes in photonic liquid crystals. As 

examples the corresponding experimentally observed effects for the enhancement of nonlinear 

optical second harmonic generation [31] and lowering of the lasing threshold [32] in photonic 

liquid crystals  have to be mentioned along with the theoretically predicted enhancement of 

Cerenkov radiation (section 4 in [11] and chapter 5 in [12]). 
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In the conclusion should be stated that the results obtained here for the EM and DM 

(see also [27, 29] and [33, 34]) clarify the physics of these modes and manifests a complete 

agreement with the corresponding results of the previous investigations obtained by a 

numerical approach [13].
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