УДК 532.783:548.3

И. С. Лонин¹, В. Ф. Чуваев¹, С. А. Сырбу^{2,4}, С. А. Кувшинова³, В. А. Бурмистров³, А. А. Сырбу⁴

СТРУКТУРНЫЕ ИССЛЕДОВАНИЯ ЦИАН-, ФОРМИЛАЗО- И АЗОКСИБЕНЗОЛОВ МЕТОДОМ ЯМР ВЫСОКОГО РАЗРЕШЕНИЯ

CYANO-, FORMYLAZO- AND AZOXYBENZENES STRUCTURE RESEARCH BY HIGH RESOLUTION NMR SPECTROSCOPY

 ¹Учреждение Российской Академии наук Институт физической химии и электрохимии им. А. Н. Фрумкина, 119991 Москва, Ленинский пр., 31
²Ивановский государственный университет, 153025 Иваново, ул. Ермака, 39
³Ивановский государственный химико-технологический университет, 153000 Иваново, пр. Ф. Энгельса, 7
⁴Ивановский институт государственной противопожарной службы МЧС России, 153040 Иваново, пр. Строителей, 33

С использованием одно- и двумерной спектроскопии ЯМР были изучены строение и изомерия гомологов рядов 4-(ω -гидрокси)алкилокси-4'-цианазоксибензола, 4-(ω -гидрокси)алкилокси-4'-цианазобензола, 4-н-октилокси-4'-цианазоксибензола, 4-(ω -гидрокси)гексилокси-4'-формилазобензола. С использованием методов двумерной корреляционной спектроскопии ЯМР, в частности, эксперимента ¹H, ¹⁵N-HMBC, было установлено строение соответствующих изомерных азоксибензолов.

Ключевые слова: азобензолы, азоксибензолы, позиционные изомеры, цианогруппа, формильная группа, одно- и двумерная спектроскопия ЯМР.

The structure and the isomerism of homologous series such as $4-(\omega$ -hydroxy)alkyloxy-4'-cyanazoxybenzene, $4-(\omega$ -hydroxy)alkyloxy-4'-cyanazobenzene, 4-oktyloxy-4'-cyanazoxybenzene, $4-(\omega$ -hydroxy)hexyloxy-4'-formylazobenzene were studied by one-dimensional and two-dimensional NMR spectroscopy. The isomer azoxybenzene structure was established by two-dimensional correlation NMR spectroscopy methods, in particular, ¹H, ¹⁵N-HMBC experiment.

Key words: azobenzenes, azoxybenzenes, position isomers, cyano group, formyl group, one-dimensional and two-dimensional NMR spectroscopy.

Проблема модификации мезоморфных и физических свойств может быть решена при самосборке супрамолекулярных жидких кристаллов за счет специфических межмолекулярных взаимодействий активных заместителей в молекулах мезогенов. Реализация этой задачи требует синтеза потенциально мезогенных соединений с электроно- и протонодонорными фрагментами, комплементарными при образовании межмолекулярной водородной связи. При этом целесообразно расширить круг традиционных терминальных и латеральных заместителей для целенаправленной модификации супрамолекулярных жидких кристаллов. В то же время, закономерности влияния таких заместителей на молекулярную структуру, особенности ассоциации мезогенов, а также

[©] Лонин И. С., Чуваев В. Ф., Сырбу С. А., Кувшинова С. А., Бурмистров В. А., Сырбу А. А., 2011

мезоморфные, физические и эксплуатационные характеристики мезоморфных веществ остаются малоисследованными. Все это сдерживает развитие представлений о самосборке супрамолекулярных жидких кристаллов и возможности получения высокоэффективных материалов, используемых в различных областях.

Поэтому в качестве объектов исследования были выбраны потенциально мезоморфные азо- и азоксибензолы с активными терминальными группами – нитрильной, формильной и гидроксильной.

Жесткое ядро N,O,N-азоксибензола было выбрано для химического конструирования по двум основным причинам. Первая заключается в высокой термостабильности мезофаз 4,4'-дизамещенных N,O,N-азоксибензолов и их широком температурном интервале [1]. Причиной этого, как было оказано [2], является получение в синтезе азоксибензолов смеси двух изомеров:

$$\begin{array}{cccc} -N = N - & n & -N = N - \\ \downarrow & & \downarrow \\ O & O \end{array}$$

Этим объясняется более низкая температура перехода смеси изомеров по сравнению с температурами переходов каждого из изомеров в мезоморфное состояние.

Существование трудноразделимой смеси изомеров показали авторы работ [3, 4]. Установлено, что изомеры имеют различные температуры фазовых переходов. Мезофаза изомера (А) более термически устойчива, чем мезофаза изомера (В).

Анализ литературы показывает, что региоизомерные азоксибензолы получают окислением соответствующих азобензолов с выходом 80 – 95 % [2 – 4]. В настоящей работе окисление проводили 30 %-ным раствором пероксида водорода в ледяной уксусной кислоте.

В условиях синтеза получают смесь позиционных изомеров. От соотношения изомеров зависят мезоморфные и физические свойства смеси. Кроме того, представляет интерес вопрос о том, будет ли меняться соотношение позиционных изомеров в смеси с удлинением цепи терминального заместителя.

Исходя из вышесказанного, в данной работе с использованием одно- и двумерной спектроскопии ЯМР были изучены строение и изомерия гомологов рядов 4-(ω гидрокси)алкилокси-4'-цианазоксибензола (**1,2,5**), 4-(ω -гидрокси)алкилокси-4'-цианазобензола (**3,4**), 4-*н*-октилокси-4'-цианазоксибензола (**6**), 4-(ω -гидрокси)гексилокси-4'формилазобензола (**7**), предполагаемые формулы которых приведены в табл. 1. Для подтверждения строения данных соединений, сигналы в спектрах ¹H и ¹³C ЯМР были полностью отнесены с помощью двумерной гомоядерной корреляционной спектроскопии (COSY), ¹H, ¹³C-эксперимента по гетероядерной одноквантовой когерентности (HSQC) и гетероядерной корреляции через множественные связи (HMBC). Также, так как в молекуле содержатся атомы азота, которые могут быть использованы при установлении структуры соединений и изучении изомерных форм, были проведены ¹H, ¹⁵N-HMBC эксперименты, показывающие ¹H-¹⁵N взаимодействия через несколько связей.

Таблица 1

Предполагаемые структурные формулы азо- и азоксибензолов 1-7

Экспериментальная часть

Спектры ЯМР на протонах и ядрах ¹³С, ¹⁵N регистрировались на приборе Bruker AvanceIII-600, оснащенным широкополосным датчиком BBO, в дейтерохлороформе, при 35 °С. Сигналы атомов углерода ($\delta_{\rm C} = 77,00$ м.д.) и остаточных протонов ($\delta_{\rm H} = 7,27$ м.д.) дейтерохлороформа использовались для калибровки шкалы ¹³С и ¹H, соответственно [5]. Калибровка шкалы химических сдвигов ¹⁵N осуществлялась относительно сигнала жидкого аммиака ($\delta_{\rm N} = 0,0$ м.д.). Все эксперименты были поставлены по стандартным методикам фирмы Bruker. Время эволюции в экспериментах gHMBC ¹H-¹³C и ¹H-¹⁵N составило 60 и 125 мс, соответственно.

Обсуждение результатов

Первым этапом работы являлось изучение спектров ПМР образцов 1–7, в результате которого были выделены две основные группы соединений. Обеим группам соответствовали спектры, характерные для *пара*-дизамещенных фенильных колец (система AA`BB`), но содержащие различное количество сигналов ароматических протонов. Так, к группе I были отнесены образцы 3,4 и 7, тогда как для образцов группы II (1,2,5 и 6) спектры содержали удвоенный набор сигналов (рис. 1), что, по-видимому, связано с наличием двух изомерных форм указанных соединений. Интегрирование спектров ПМР образцов 1,2,5 и 6 показало, что соотношение изомеров А/В находится в диапазоне от 45:55 до 59:41 и растет с увеличением размера заместителя в 4-м положении (табл. 2). Кроме этого, значения химических сдвигов сигналов ароматических протонов значительно отличались в зависимости от группы.

Рис. 1. Фрагменты ПМР спектров образцов **1** и **3**, (группа I и II, соответственно). Область ароматических протонов

Таким образом, следующим этапом работы являлось установление строения соединений 1–7 и объяснение наличия изомерии в группе II (образцы 1,2,5 и 6). С этой целью, с использованием гомо- и гетероядерной двумерной спектроскопии для всех образцов было сделано полное отнесение сигналов в спектрах ¹H, ¹³C а также ¹⁵N ЯМР. Полученные спектральные характеристики приведены в табл. 2 – 4, а отнесение сигналов в спектрах описано ниже на примере образца 7 с использованием обозначений, приведенных на рис. 2.

Рис. 2. Структура азобензола 7. Стрелками показаны некоторые важные наблюдаемые гетероядерные корреляции

Спиновые системы протонов были выделены с использованием спектра COSY, в котором проявлялись корреляции протонов H2-H3 и H2`-H3` и все последовательные корреляции протонов 6-гидроксиалкоксильного заместителя (Ha-Hf).

Таблица 2

Соотношение изомеров для образцов группы ІІ по данным ЯМР

N⁰	1	2	5	6	
A/B	45:55	55:45	58:42	59:41	

Отнесение сигналов протонов кольца, содержащего гидроксиалкоксильный заместитель, проводилось с использованием ¹H,¹³C-HMBC спектра, в котором наблюдался кросс-пик C4-Ha, что, в свою очередь, позволило отнести сигналы H2 и H3, по корреляциям C4-H2 и C4-H3, соответственно (рис. 3). Следует отметить, что H3 находится в более сильном поле (7,00 м.д.) по сравнению с H2 (7,93 м.д.) из-за электронодонорного влияния соседнего алкоксизаместителя в 4-м положении. Аналогично, используя корреляции C4'-Ha' и Ca'-H3' было сделано отнесение протонов H2' (7,97 м.д.) и H3' (8,00 м.д.).

Рис. 3. Фрагмент спектра ¹Н, ¹³С-НМВС азобензола 7

≈≈≈≈

Сигналы гидрогенизированных ядер ¹³С ароматических колец и заместителей были отнесены с помощью спектра HSQC, который демонстрирует все прямые гетероядерные корреляции. Сигналы четвертичных С1 и С1` были найдены по кросс-пикам С1-H2; С1-H3 и С1`-H2`; С1`-H3`, соответственно (рис. 3).

Таблица 3

¹ u	δ, м.д., мультиплетность, изомер (А/В)							
11	1 (n=0)		1 (n=0)	1 (n=0)			1 (n=0)	
H2	8,35, м (A)	8,32, м (А)	7,93, м	7,93, м	8,33, м (А)	8,33, м (A)	7,93, м	
	8,27, M (B)	8,24, м (В)		, ,	8,25, м (В)	8,24, м (В)	, ,	
Н3	7,02, m (A) 7,00, m (B)	6,99, м (A) 6 97 м (B)	7,01, м	7,01, м	6,98, м (A) 6 95 м (B)	6,98, м (A) 6 95 м (B)	7,00, м	
	7,00, M(D)	0,97, M(D)			0,95, M(D)	0,95, M(D)		
H2`	8,42, м (А) 8,11, м (В)	8,40, м (А) 8,09, м (В)	7,92, м	7,92, м	8,09, м (В)	8,40, м (А) 8,09, м (В)	7,97, м	
112)	7,80, м (А)	7,78, м (А)			7,79, м (А)	7,78, м (А)	0.00	
H3	7,74, м (В)	7,71, м (В)	/,// M	/,// M	7,73, м (B)	7,72, м (В)	8,00, м	
-OCH	4,18, т	$4.20 \pm (AB)$	4.06 m	4.05 m	4,04, т (А)	4,04, т (А)	405 т	
-0012-	(AB)	ч,20, I (AD)	ч,00, 1	ч ,05, г	4,03, т (В)	4,03, т (В)	ч,05, 1	
-СН-ОН	4,01, т (А)	3,88, т (А)	3 67 т	3 65 т	363 T (AB)	_	3.66 т	
0112011	4,02, т (B)	3,87, т (В)	5,071	5,05 1	5,05, I (<i>I</i> B)		5,00, 1	
			1.05	1,83, м;	1.81. м:	1.01	1.00	
			1,85, м;	1,58, м;	1.56 м.	1,81, м;	1,83, м;	
-(CH ₂)n-	-	2.08 м (АВ)	1,53, м;	1,49, м;	1,63, м, 147 м [.]	1,47, м;	1,52, м;	
(0112)11		_ ,00 m (122)	1,47, м ;	1,41-	1 36-1 30 м	1,38-1,28, м	1,46, м;	
			1,62, м	1,38, м , (6Н)	(10H) (AB)	(8H) (AB)	1,61, м	
				(011)		0.89 T(A)		
-CH ₃	-	-	-	-	-	0.90, T (R)	-	

Данные ¹Н ЯМР образцов 1–7

Кроме этого, так как в молекуле содержаться атомы азота, которые могут быть использованы при установлении структуры соединения, нами был осуществлен 1H,15N-HMBC эксперимент, оптимизированный для значения константы спинспинового взаимодействия 4 Гц, показывающий 1H-15N взаимодействия через несколько связей. Как видно на рис. 4, в спектре присутствуют искомые кросс-пики N1-H2 и N1`-H2`, соответствующие двум сигналам магнитно-неэквивалентных ядер 15N соединения 7, значения химических сдвигов которых (δN1=514,9; δN1`=489,8) подтверждают структуру 4-(ω-гидроксигексилокси)-4`-формилазобензола 7 [6].

Аналогичный подход был использован для отнесения сигналов образцов 1–6. Для группы II во внимание принималась интегральная интенсивность сигналов протонов, что позволило выделить сигналы, соответствующие каждому изомеру.

Следует отметить, что, с использованием метода непрямого детектирования ¹⁵N, в спектрах ¹H, ¹⁵N-HMBC соединений **1–6** не проявились сигналы азота цианогруппы, по-видимому, из-за малого значения гетероядерной КССВ. Однако, наличие -C≡N группировки было подтверждено с помощью ¹³С ЯМР спектров, в которых присутствуют характеристичные сигналы в области 118 м.д.

Рис. 4. Спектр 1Н,15N-НМВС азобензола 7

Таблица	4
---------	---

Данные ¹³ С ЯМР	образцов 1–7
----------------------------	--------------

130	δ, м.д., изомер (А/В)							
C	1 (n=0)		1 (n=0)		1 (n=0)		1 (n=0)	
C1	137,8 (A)	137,5 (A)	146.8	1467	137,3 (A)	137,3 (A)	146,9	
	141,5 (B)	141,1 (B)	140,0	140,7	140,9 (B)	141,1 (B)		
C^2	128,5 (A)	128,4 (A)	123.0	123.0	128,5 (A)	128,4 (A)	125.3	
	124,4 (B)	124,3 (B)	125,0	125,0	124,2 (B)	124,2 (B)	120,5	
C3	114,6 (A)	114,4 (A)	114.9	115.0	114,5 (A)	114,5 (A)	114.8	
	114,4 (B)	114,3 (B)	117,7	115,0	114,3 (B)	114,3 (B)	114,0	
C4	160,3 (A)	160,6 (A)	162.7	162.8	161,0 (A)	161,0 (A)	162.5	
	162,0 (B)	162,2 (B)	102,7	102,0	162,5 (B)	162,5 (B)	102,5	
CT	150,7 (A)	150,6 (A)	154.8	154,9	150,7 (A)	150,7 (A)	156.2	
	147,2 (B)	147,2 (B)	154,0		147,3 (B)	147,3 (B)	130,2	
C^{2}	123,0 (A)	122,9 (A)	123,0	123,0	130,0 (A)	122,9 (A)	122,9	
	125,6 (B)	125,5 (B)			125,5 (B)	125,5 (B)		
C3	132,8 (A)	132,8 (A)	133,1	133,1	132,8 (A)	132,7 (A)	130,6	
0.5	132,6 (B)	132,6 (B)			132,6 (B)	132,6 (B)		
C4	114.9 (A)	114.7 (A)	113.2	113.2	114.7 (A)	114.7 (A)	136.0	
	111.8 (B)	111.6 (B)	113.2		111.6 (B)	111.6 (B)	150.7	
-C=N	117,7 (A)	117,7 (A)	118.6	118,6	117,7 (A)	117,7 (A)	_	
-C=N	118,5 (B)	118,5 (B)	110,0		118,5 (B)	118,5 (B)	-	
-OCH ₂ -	69,6 (A)	65,6 (A)	68.3	68 5	68,4 (A)	68,4 (A)	68.3	
	69,8 (B)	65,8 (B)	00.5	00,5	68,7 (B)	68,7 (B)	00,5	
-CH-OH	61,3 (A)	59,8 (A)	62.8	62,9	63,0 (A)	-	62,7	
-CH ₂ OH	61,2 (B)	59,6 (B)	02,0		62,9 (B)			

-(CH ₂)n-	-	31,9 (A) 31,8 (B)	29,1; 25,8; 25,5; 32,6	29,1; 25,9; 25,7; 29,3; 29,2; 32,7	32,7 (AB); 29,4-29,0 (AB); 25,9 (AB); 25,7 (AB)	31,7 (AB); 29,3-29,0 (AB); 25,9 (AB); 22,6 (AB);	29,1; 25,8; 25,5; 32,6
-CH ₃	-	-	-	-	-	14,0 (AB)	-
-CHO	-	-	-	-	-	-	191,5

Продолжение табл. 4

Как видно из табл. 3 – 5, спектральные характеристики для образцов группы I и II значительно отличаются. Особенно показательными являются данные ¹⁵N ЯМР. Значения химических сдвигов азотов ~500 Гц для образцов группы I подтверждают азоформу соединений **3**,4 и 7. С другой стороны, проявление сигналов ¹⁵N для группы II в области 310 – 330 Гц свидетельствует в пользу азокси-производных и объясняет удвоение в спектрах. Данный факт связан с наличием региоизомерных форм азоксибензолов **1**,**2**,**5** и **6**, окисленных как по атому N1, так и N1`.

Таблица 5

Данные ¹⁵N ЯМР образцов 1–7

15 _N	δ, м.д., изомер (А/В)							
IN	1	2	3	4	5	6	7	
N1	330,7 (A) 327,5 (B)	330,5 (A) 328,2 (B)	514,6	514,5	330,2 (A) 327,8 (B)	330,3 (A) 328,1 (B)	515,1	
N1`	311,4 (A) 320,9 (B)	311,9 (A) 321,0 (B)	486,6	486,9	310,4 (A) 320,3 (B)	310,7 (A) 320,1 (B)	489,8	

Известно, что в спектрах ¹⁵N ЯМР азоксибензолов в более сильное поле смещен окисленный атом азота (=NO-) [7]. Таким образом, на основании полученных спектральных данных можно достоверно установить структуру изомеров A и B и судить о их количественном соотношении (рис. 5).

Следует отметить, что в ряду 4-(ω -гидрокси)алкилокси-4'-цианазоксибензолов с ростом длины цепи алкилоксильного заместителя в смеси увеличивается доля изомера А.

Рис. 5. ¹H, ¹⁵N-HMBC спектр изомеров азоксибензола 6

Заключение

В результате выполненной работы с использованием одно- и двумерных методов ЯМР было исследовано строение образцов 1 - 7 и показано, что данные соединения можно разделить на две группы. В результате анализа спектральных данных было установлено, что образцы группы I являются азобензолами 3,4 и 7 (табл. 5), а образцы группы II представляют собой смесь региоизомерных азоксибензолов, присутствующих в растворах образцов в различных количествах. С использованием методов двумерной корреляционной спектроскопии ЯМР, в частности, эксперимента 1 H, 15 N-HMBC, было установлено строение соответствующих изомерных азоксибензолов 1,2,5,6.

Работа выполнена при поддержке Аналитической ведомственной целевой программы Рособразования на 2009-2011 годы "Развитие научного потенциала высшей школы"; проект РНП 2.1.1/3207 «Изучение механизмов фазовых переходов жидкокристаллических соединений с различными типами межмолекулярных взаимодействий».

Список литературы

- 1. Osman M. A., Huynh-Ba T. // Mol. Cryst. Liq. Cryst. 1983. Vol. 92. P. 57 62.
- 2. Dabrowski R. // Mol. Cryst. Liq. Cryst. 1980. Vol. 63. № 1/2. P. 61 63.
- 3. Dabrowski R. // Wiad. Chem. 1981. R. 35. P. 479 501.

- Kirov N., Simova P., Ratajczak H. // Mol. Cryst. Liq. Cryst. 1980. Vol. 58. № 3/4. 4. P. 285 – 298.
- Gottlieb H. E., Kotlyar V., Nudelman A. // J. Org. Chem. 1997. Vol. 62. P. 7512 7515. 5.
- Marek R., Lycka A. // Current Organic Chemistry. 2002. Vol. 6. P. 35 66. 6.
- 7. Sawada M., Takai Y., Tanaka T., Hanafusa T., Okubo M., Tsuno Y. // Bulletin of the Chemical Society of Japan. 1990. Vol. 63. P. 702 - 707.

Поступила в редакцию 30.05.2011 г.