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We study numerically impact of spatially varying curvature on position and number of topological defects 

(TDs). A two-dimensional Landau-de Gennes tensorial formalism is used. We focus on TDs in axially symmetric 
dumb-bell structures, possessing area patches exhibiting both positive and negative Gaussian curvature. These 
nematic shells exhibit spherical topology, enforcing the total topological charge mtot=2. We show that on 
progressively narrowing necks of dumb-bell structures the number of TDs increases via nucleation of topological 
defect-antidefect pairs. In each surface patch, characterised by a well defined average Gaussian curvature, the 
sum of TDs and the total smeared Gaussian topological charge tends to be zero. Therefore, in dumb-bell 
structures TDs tend to spatially redistribute in a way to compensate the smeared Gaussian curvature topological 
charge. 
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Проводится количественное изучение влияния вариации пространственной кривизны на 

расположение и число топологических дефектов (ТД). Использован двумерный тензорный формализм 
Ландау – де Жена. Внимание сосредоточено на топологических дефектах в аксиально симметричных 
гантелеобразных структурах, обладающих участками, проявляющими как положительную, так и 
отрицательную гауссову кривизну. Эти нематические поверхности (оболочки) проявляют сферическую 
топологию, обеспечивая общий топологический заряд mобщ. = 2. Мы показываем, что при 
прогрессирующем истончении «шейки» гантели возрастает число топологических дефектов, что 
связано с зарождением пар топологический дефект – антидефект. На каждом небольшом участке 
поверхности, характеризующемся хорошо выраженной гауссовой кривизной, сумма топологических 
дефектов и общий «размытый» гауссовый топологический заряд стремятся к нулю. Поэтому в 
гантелеобразных структурах топологические заряды склонны к пространственному перераспределению 
для компенсации «размытого» топологического заряда гауссовой кривизны. 

Ключевые слова:  жидкие кристаллы, нематические оболочки, гауссова кривизна, топологические 
дефекты 
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Introduction 

Study of topological defects (TDs) [1] represents 
an attractive branch of science both from fundamental 
and applied perspective. TDs appear unavoidably, at 
least temporary, in systems with broken continuous 
symmetry. Consequently, their appearance in nature is 
ubiquitous, spanning all branches of physics [1, 2]. 
Due to their topological origin they exhibit several 
universalities which are independent of microscopic 
system’s details [1, 2]. 

Particular adequate systems to investigate TDs 
are various liquid crystalline (LC) phases and 
structures [3–5]. Namely, LCs are relatively easily 
experimentally accessible due to their softness (i.e. 
weak local perturbations could trigger apparent 
macroscopic-scale responses), optical anisotropy, and 
rich diversity of different configurations. Because LCs 
provide a rich environment for precisely controlled 
experiments they represent an ideal testing ground to 
study physics of TDs [3–6]. In addition TDs in LCs 
could be exploited in increasingly broad range of 
technological and biomedical applications [7, 8]. 

Nematic phase represents the simplest LC 
configuration, exhibiting only long range orinetational 
order [3–8]. In bulk equilibrium anisotropic LC 
molecules tend to align homogenously along a single 
symmetry breaking direction. In mesoscopic 
description nematic ordering is at the simplest level 
represented by the nematic director field n  [3–6]. The 
unit field n  points along an average local uniaxial 
ordering, where states n± are physically equivalent. 
TDs refers to regions where n  is not uniquely defined. 
In LCs there exist either point or line TDs. Their key 
signature is the topological charge [1, 4] which is a 
conserved property. 

At cores of defects nematic ordering is strongly 
perturbed and for this reason essentially melted and in 
general biaxial [4, 8, 9]. Consequently, local LC 
ordering needs to be described in terms of a nematic 
tensor order parameter [1, 8, 9]. 

In the last decade nematic shells [10–13] have 
become topic of hot interest. A typical LC shell 
consists of a rigid micrometer-sized colloidal particle 
coated with a thin sheet of nematic LC subject to 
degenerate tangential anchoring. Such systems 
promise various potential applications. For example, 
they could pave path towards formation of self-
assembled scaled crystals, where TDs would play the 
role of valences [10]. Therefore, TDs would directly 
influence  symmetry  of  a  resulting  crystal  structure 

which has strong impact on physical properties. 
Therefore, it is of strong interest to understand which 
parameters could sensitively control number and 
position of TDs in LC shells. 

Nematic shells are effectively two-dimensional 
(2D) and consequently the topological charge of TD is 
equivalent to its winding number m [4]. The latter is 
defined as the number of revolutions of n  divided by 
2π on going once around the defect’s core. Due to the 
head-to-tail symmetry of n , in addition to integers, 
half integer values of m are also allowed. By the 
Poincare theorem [14, 15] the topology of a LC shell 
surface determines the total topological charge mtot 
within it. For example, mtot=2 for the spherical 
topology. Vitelli and Nelson [11] were the first to 
show that spherical shells exhibit four m = 1/2 which 
tend to maximize their mutual separation if anisotropy 
of elastic constants is not taken into account. Latter 
studies show that elastic anisotropy, geometry and 
external fields could have strong impact both on 
number and position of TDs [12, 13, 16–18]. 
Furthermore, using simple 2D XY modelling of 
similar systems reveal analogy with electrostatics [19].  
In this analogy m and the Gaussian curvature play the 
role of the electrical charge and smeared electrical 
charge respectively. 

In this contribution we study impact of curvature 
on number and position of topological defects in 
nematic shells exhibiting spherical topology using a 
mesoscopic tensorial approach. The plan of the paper 
is as follows. The model used is defined Sec. II. Our 
numerical results are presented in Sec. III and 
discussed in the last section. 

 
Model 

 
We model two-dimensional orientational order 

within a thin LC layer with the nematic tensor order 
parameter. In the diagonal form we define it as 

 
( )Q n n n nλ ⊥ ⊥= ⊗ − ⊗ , (1)

 
where details are given in [13,16]. Here λ  is the 
positive eigenvalue of Q  and the unit vectors ( n , n⊥ ) 

are the eigenvectors corresponding to the eigenvalues 
(λ ,-λ ). We henceforth refer to n  as the nematic 
director field because it plays a similar role as          
the conventional uniaxial nematic director field in    
3D [1, 4].  
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We express the corresponding total free energy 
density potential as [13, 16] 
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where A0, B are material constants, T is the absolute 
temperature, Tc determines the isotropic-nematic phase 
transition within undistorted flat LC film, k is the 
nematic elastic constant, and s∇  stands for the surface 
gradient [13] and Tr stands for the trace operation. The 
condensation part of f is minimised for  
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Note that we use the simplest possible model in 

order to demonstrate key phenomena of our interest. 
We work in the approximation of a single nematic 
elastic constant [13, 16]. Therefore, we do not consider 
features related with anisotropy of elastic constants. 

We focus on nematic ordering within thin closed 
surfaces, the so called nematic shells [10]. Their 
surfaces are defined with the position vector  
 

( )cos( ) ( )sin( ) ( )x y zr v u e v u e z v eρ ρ= + + , (4)

sin( ) sin(3 )b v c vρ = + , (5a)
cos( )z a v= , (5b)

 
where the Cartesian coordinate system (x, y, z) is 
defined by the unit vector triad ( xe , ye , ze ). The 
surface of a given geometry is parametrized by 
parameters (u, v), where [0,2 [u π∈ , [0, [v π∈ . 
Therefore, structures of our study are axially 
symmetric about the z-axis and exhibit the inversion 
symmetry. Ellipses are obtained for c = 0 (where a 
sphere corresponds to a = b). Dumb-bell type 
geometries are obtained on varying c. The Gaussian 
curvature of a surface is defined by the equation 
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where v  stands for the local surface normal, 
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. Note that according to the 

Gauss-Bonnet theorem [13, 15, 16] it holds 
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for surfaces exhibiting in-plane orientational ordering. 
Here integration is performed over the closed surface 
and mtot stands for the total topological charge of the 
nematic director field. According to the Poincare 
theorem [14] it also holds 
 

2(1 )totm gχ= = − ,  (8)
 
where χ  is the Euler-Poincare characteristics of the 
closed surface and g is its genus (equals to the number 
of «handles» of the surface). For example, spherical 
(toroidal) topology is characterized by g = 0 (g = 1), 
consequently mtot = 2 (mtot = 0). 

For convenience we introduce also the total 
smeared Gaussian curvature topological charge 

gm∆ within a surface area A∆ as 

21
2g

A

m Kd r
π ∆

∆ = − ∫∫ , 
 

(9)

 
where the integration is carried over A∆ . If integration 
is performed over the whole closed surface one 
obtains 0g totm m∆ + = . In case that a surface 
possesses patches characterised by significantly 
different average Gaussian curvature, then within each 
such patch of area A∆  there is a tendency 
 

0g totm m∆ + ∆ = , 
 
(10)

 
where totm∆ stands for the total topological charge 
within A∆ . This equation expresses the tendency that 
“real” topological charges tend to neutralize local 
smeared Gaussian curvature topological charges [19].  

In our simulations we introduce a characteristic 
linear scale R which measures the width of the central 
part of axially symmetric structures. An important role 
is also played by the nematic order parameter 
correlation length which we define in the nematic 
phase as 
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For a given geometry, defined by dimensionless 

parameters / ,a Rα = / ,b Rβ = / ,c Rγ =  we 
calculated numerically equilibrium LC structures deep 
in the nematic phase, where details are given in 
[13, 16]. 

 
Numerical simulations 

 
We numerically investigate impact of curvature 

on position and number of TDs within thin nematic 
LC shells exhibiting spherical topology. The latter 
enforces the total topological charge mtot = 2. Simple 
2D XY modelling suggests that interactions among 
TDs and their coupling with the Gaussian curvature 
bears strong analogy with electrostatics [19]. 
According to this analogy TDs possessing positive 
(negative) m are attracted to regions exhibiting 
maximal positive (minimal negative) value of K. To 
test validity of these predictions in our more complex 
description, based on the tensorial order parameter 
exhibiting quadrupolar symmetry, we continuously 
vary local curvature of LC films, while preserving the 
axial rotational symmetry of geometries, and monitor 
behaviour of TDs. Of particular interest is whether 
geometries with neighbouring regions exhibiting 
positive and negative K could trigger unbinding of 
pairs (m = 1/2, m = –1/2) of TDs.  

In simulations we focus on impact of spatially 
dependent Gaussian curvature on position and number 
of TDs. In Fig. 1 we plot some representative spatial 
profiles of K in structures of our interest. Different 
patterns of TDs are depicted in Fig. 2. In our 
simulations we originated from a perfect spherical 
geometry or radius R. In this case the Gaussian 
curvature K = 1/R2 is spatially constant and positive. 
Within our minimal model we obtain four m = 1/2 
TDs (see the 1st row of Fig. 2) as already predicted by 
Vitteli and Nelson [11] using simpler model and also 
studied in detail in [13, 16]. In this case relative 
positions of TDs are dominated by their mutual 
repulsion. Consequently, they occupy vertices of a 
“virtual tetrahedron” touching the spherical surface in 
order to maximise their mutual separation. 

We proceed by continuously squeezing the shell 
geometry, while preserving the mirror symmetries (see  

 

the configurations below the 1st row in Fig. 2), in order 
to introduce regions with K<0 in the neck of resulting 
structures as shown in Fig. 1. We henceforth refer to 
the upper and bottom region with K > 0 as the positive 
Gaussian surfaces and to the neck area exhibiting K<0 
as the negative Gaussian surface. One sees (Fig. 2, the 
2nd row) that four TDs with m > 0 tend to move 
towards regions exhibiting maximal positive K as 
expected. This is clearly visible by comparing ( , )u vλ  
and ( , )n u v  configurations in the 1st and 2nd row.  

When a value of K < 0 within the neck area 
reaches the critical value, it triggers local nucleations 
of two pairs of TDs. Here each pair consists of 
(m = 1/2,m = –1/2). A typical configuration is shown 
in the 3rd row in Fig. 2. Two created TDs bearing 
m = 1/2 (m = –1/2) are after their creation pushed 
towards areas exhibiting maximal positive (maximal 
negative) value of K in order to partially screen the 
effective smeared Gaussian curvature topological 
charge. 

 

 
 

Fig. 1. Spatial variation of the Gaussian curvature.  
The resulting structures possess surface patches exhibiting 

K > 0  and  K < 0. / 6.Rξ =  
 
On further squeezing the geometry additional 

two pairs (m = 1/2, m = –1/2) of TDs appear, see the 
4th row in Fig. 2. The resulting equilibrium profile 
consists now of four m = 1/2 TDs within each positive 
Gaussian surface and four m = –1/2 TDs within the 
negative Gaussian surface, respectively. 
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Fig. 2. The nematic order parameter spatial variations within thin LC layers. The left column: Colour plot of  within LC 
layers covering different closed geometries exhibiting spherical topology, enforcing mtot = 2. The middle column: Spatial 
variation of  in the (u,v) plane. The right column: the director field orientation within the (u,v) plane. The 1st 
( 1,α β= = 0γ = ) and 2nd row ( 1.9,α = 1.2,β = 0.2γ = ): four TDs with m=1/2. The 3rd row ( 1.9,α = 1.2,β = 0.5γ = ): 
eight TDs, six TDs with m = 1/2 and two with m = -1/2. The 4th row ( 1.9,α = 1.2,β = 0.7γ = ): twelve TDs, eight TDs with 
m = 1/2 and four with m = -1/2. The corresponding plots of K as shown in Fig. 1. / 6.R ξ =  
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Note that further squeezing the structures do not any 
more qualitatively change configurations of TDs. 
Namely integration over each positive Gaussian 
surface yields 2gm∆ = − . On the other hand the 
integration over the negative Gaussian surface yields 

2gm∆ = . Therefore, the total compensation of these 
smeared Gaussian topological charges within each 
positive (negative) Gaussian surface requires presence 
of four m = 1/2 (m = -1/2) TDs, respectively, in order 
to fulfil Eq. (1). 

 
Conclusions 

 
We studied impact of the Gaussian curvature in 

effectively 2D LC surfaces exhibiting in-plane 
orientational order. We consider axially symmetric 
closed structures, also referred to as nematic shells. In 
particular we focus on dumb-bell shells possessing 
spherical topology. In this case the total topological 
charge within a shell equals mtot = 2.  

We use a Landau-type minimal model where the 
degree of local orientational ordering is described in 
terms of the tensor order parameter. Equilibrium 
profiles were calculated by numerical minimization of 
the free energy functional. Due to the approximation 
of equal nematic elastic constants we obtain within a 
spherical shell four TDs bearing m = 1/2 residing in 
vertices of a hypothetical tetrahedron in line with 
previous studies [11]. Such configuration of TDs 
maximizes their mutual separation. On gradually 
squeezing initial spherical geometry we obtain dumb-
bell geometries, possessing regions exhibiting both 
positive and negative local Gaussian curvatures. One 
sees that in initial stages the four m = 1/2 tend to be 
pushed towards regions exhibiting maximal Gaussian 
curvature as the electrostatic analogy suggests [19]. 
According to it “real” discrete topological charges 
tend to neutralise the locally smeared Gaussian 
topological charge concentrated within regions 
displaying maximal values of K. On further squeezing 
the geometry the Gaussian curvature at the neck of 
dumb-bell becomes negative enough to trigger 
unbinding of two pairs (m = 1/2, m = -1/2) of TDs in 
order to more efficiently compensate gm∆ . Finally, in 
relatively strongly distorted dumb-bell structure we 
obtain completely compensated Gaussian topological 
charges in all areas of a dumb-bell structure. 

Results of our simulations are of interest also for 
research dealing with biological membranes [20–23]. 
Namely, as first pointed out in [20] the coupling 

between in-plane ordering within a membrane and its 
curvature might have strong impact on the membrane 
shape. In particular presence of TDs in ordering gives 
rise to presence of spatial inhomogeneities which 
might enable local membrane processes important for 
biological cell viability. 
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