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We study numerically impact of spatially varying curvature on position and number of topological defects
(TDs). A two-dimensional Landau-de Gennes tensorial formalism is used. We focus on TDs in axially symmetric
dumb-bell structures, possessing area patches exhibiting both positive and negative Gaussian curvature. These
nematic shells exhibit spherical topology, enforcing the total topological charge m,,=2. We show that on
progressively narrowing necks of dumb-bell structures the number of TDs increases via nucleation of topological
defect-antidefect pairs. In each surface patch, characterised by a well defined average Gaussian curvature, the
sum of TDs and the total smeared Gaussian topological charge tends to be zero. Therefore, in dumb-bell
structures TDs tend to spatially redistribute in a way to compensate the smeared Gaussian curvature topological
charge.
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IIposodumcs  Konuwecmgennoe usyyeHue GIUAHUSL GAPUAYUU  NPOCPAHCMBEHHOU  KPUGU3HLL  HA
pacnonodicerHue u wucio mononocuveckux oepexmos (T]]). Hcnonvsosan 08ymepHblil MeH30PHBLU DOPMATUIM
Jlanoay — oe Kena. Buumanue cocpe0omoyeno Ha monoiocuteckux 0e@exmax 6 aKCUdaibHO CUMMEMPUYHbIX
2aHMeNe0OPA3HbIX CMPYKMYpax, o001a0aowux Yy4acmKamu, RPOACIIOWUMU KAK NOLOJNCUMENbHYIO, MAK U
OMPUYAMENBHYIO 2AYCCO8Y KPUGU3HY. Dmu HemamuyecKue nogepxHocmu (000104Ku) nposigisiom chepuyeckyro
mononocuto, obecneyusas ooOwull MONONOGUYECKULl 3apA0 Mz, = 2. Mol nokasvieaem, umo npu
npocpeccupyroujemM UCMOHYEeHUU «WelKUuy 2anmenu 603pACmaem HYUCIO MONOIOSUYECKUX OeqeKmos, umo
CBA3AHO C 3apodcOeHuemM nap monono2uveckull oegpexm — ammuoegexm. Ha xadxcoom neboavbuiom yuacmie
NOBEPXHOCIU, XAPAKMEPUIVIOWEMC XOPOULO BBIPAICEHHOU 2ayCCO8OU KPUBUSHOU, CYMMA MONOL0UYECKUX
deghexmos u 00wl «PASMBIMBINLY 2AYCCOGBIIL MONONo2UYecKull 3apad cmpemamcs k Hymo. [losmomy @
2aHMeNe0OPA3HbIX CMPYKMYPAX MONnoI02udecKue 3apsiobl CKIOHHbL K BPOCMPAHCIMEEHHOMY NePEPACHPEOeNeHUI0
0711 KOMNEHCayUuL «Pazmblinozo» MonoI0SULecKo20 3apsaod 2aycco8ol KpUGU3Hb.

Knrouesvie cnosa: dicuokue Kpucmaiivl, Hemamuyeckue 000I0YKU, 2AyCcco8a KPUBUIHA, MONOIOSUYECKUE
Oeghexmul
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Introduction

Study of topological defects (TDs) [1] represents
an attractive branch of science both from fundamental
and applied perspective. TDs appear unavoidably, at
least temporary, in systems with broken continuous
symmetry. Consequently, their appearance in nature is
ubiquitous, spanning all branches of physics [1, 2].
Due to their topological origin they exhibit several
universalities which are independent of microscopic
system’sdetails[1, 2].

Particular adequate systems to investigate TDs
are various liquid crystaline (LC) phases and
structures [3-5]. Namely, LCs are relatively easily
experimentally accessible due to their softness (i.e.
weak local perturbations could trigger apparent
macroscopic-scale responses), optical anisotropy, and
rich diversity of different configurations. Because LCs
provide a rich environment for precisely controlled
experiments they represent an ideal testing ground to
study physics of TDs [3-6]. In addition TDs in LCs
could be exploited in increasingly broad range of
technological and biomedical applications[7, 8].

Nematic phase represents the simplest LC
configuration, exhibiting only long range orinetational
order [3-8]. In bulk equilibrium anisotropic LC
molecules tend to align homogenously along a single
symmetry  breaking direction. In  mesoscopic
description nematic ordering is at the simplest level
represented by the nematic director field # [3-6]. The
unit field # points along an average local uniaxia
ordering, where states t# are physically equivalent.
TDs refersto regions where 7 isnot uniquely defined.
In LCs there exist either point or line TDs. Their key
signature is the topologica charge [1, 4] which is a
conserved property.

At cores of defects nematic ordering is strongly
perturbed and for this reason essentially melted and in
general biaxial [4,8,9]. Consequently, local LC
ordering needs to be described in terms of a nematic
tensor order parameter [1, 8, 9].

In the last decade nematic shells [10-13] have
become topic of hot interest. A typica LC shell
consists of a rigid micrometer-sized colloidal particle
coated with a thin sheet of nematic LC subject to
degenerate tangential anchoring. Such systems
promise various potential applications. For example,
they could pave path towards formation of self-
assembled scaled crystals, where TDs would play the
role of valences [10]. Therefore, TDs would directly
influence symmetry of a resulting crystal structure

which has strong impact on physical properties.
Therefore, it is of strong interest to understand which
parameters could sensitively control number and
position of TDsin LC shells.

Nematic shells are effectively two-dimensional
(2D) and consequently the topological charge of TD is
equivalent to its winding number m [4]. The latter is
defined as the number of revolutions of 7 divided by
21 on going once around the defect’s core. Due to the
head-to-tail symmetry of 7, in addition to integers,
half integer values of m are aso alowed. By the
Poincare theorem [14, 15] the topology of a LC shell
surface determines the total topological charge mg
within it. For example, mu=2 for the spherical
topology. Vitelli and Nelson [11] were the first to
show that spherical shells exhibit four m = 1/2 which
tend to maximize their mutual separation if anisotropy
of elastic constants is not taken into account. Latter
studies show that elastic anisotropy, geometry and
external fields could have strong impact both on
number and position of TDs [12,13,16-18].
Furthermore, using simple 2D XY modelling of
similar systemsreveal analogy with electrostatics [19].
In this analogy m and the Gaussian curvature play the
role of the electrical charge and smeared electrical
charge respectively.

In this contribution we study impact of curvature
on number and position of topological defects in
nematic shells exhibiting spherical topology using a
mesoscopic tensorial approach. The plan of the paper
is as follows. The model used is defined Sec. Il. Our
numerical results are presented in Sec. Il and
discussed in the last section.

Model

We model two-dimensiona orientational order
within a thin LC layer with the nematic tensor order
parameter. In the diagonal form we define it as

0= A ®ii—ii, ®i,), 1)

where details are given in [13,16]. Here A is the
positive eigenvalue of O and the unit vectors (7,7, )

are the eigenvectors corresponding to the eigenvalues
(A ,-A4). We henceforth refer to # as the nematic
director field because it plays a similar role as
the conventional uniaxial nematic director field in
3D [1, 4].
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We express the corresponding total free energy
density potential as[13, 16]

Lot (o)

f= Ao{ (2)

C

where 4y, B are material constants, 7 is the absolute
temperature, T, determines the isotropic-nematic phase
transition within undistorted flat LC film, & is the
nematic elastic constant, and V stands for the surface

gradient [13] and 7Tr stands for the trace operation. The
condensation part of fis minimised for

A=], = AO[T Tj. @3)

2B

Note that we use the smplest possible modd in
order to demondtrate key phenomena of our interest.
We work in the approximation of a single nematic
elastic constant [13, 16]. Therefore, we do not consider
features related with anisotropy of elastic constants.

We focus on nematic ordering within thin closed
surfaces, the so caled nematic shells [10]. Their
surfaces are defined with the position vector

7= p(v)cos(u)e, + p(v)sin(u)e, +z(v)e. (4
p=bsn(v)+csn(3v), (59)
z=acos(v), (Sb)

where the Cartesian coordinate system (x, y, z) is
defined by the unit vector triad (é,,é,,é.). The

surface of a given geometry is parametrized by
parameters (v, v), where ue[0,2z[,ve[0,7].
Therefore, structures of our study are axialy
symmetric about the z-axis and exhibit the inversion
symmetry. Ellipses are obtained for ¢ =0 (where a
sphere corresponds to « =b). Dumb-bell type
geometries are obtained on varying c¢. The Gaussian
curvature of a surfaceis defined by the equation

K =3((r(v.5)) - 1r(V5)) 1. e

_ ZZ,V (zz,v/:),vv - /:),vzz,vv )
p(p2+22)

(6)

where v stands for the loca surface normal,
04 0%4 .
and4,=—, A4, =— . Note that according to the
Yoy ’ ov

Gauss-Bonnet theorem [13, 15, 16] it holds

1

for surfaces exhibiting in-plane orientational ordering.
Here integration is performed over the closed surface
and my Stands for the total topological charge of the
nematic director field. According to the Poincare
theorem [14] it also holds

My =X = 2(1_g) ’ (8)

where y is the Euler-Poincare characteristics of the

closed surface and g isits genus (equal s to the number
of «handles» of the surface). For example, spherical
(toroidal) topology is characterized by ¢ =0 (g =1),
consequently mi = 2 (m = 0).

For convenience we introduce also the total
smeared Gaussian curvature topological charge
Am,, within asurface area A4 as

Amg =-%ng2}_’: f (9)

where theintegration is carried over A4 . If integration
is performed over the whole closed surface one
obtains Am,+m, =0. In case tha a surface

possesses patches characterised by significantly
different average Gaussian curvature, then within each
such patch of area A4 there is atendency

Am, +Am,, =0, (10)

tot

where Am,, stands for the total topological charge

withinA4 . This equation expresses the tendency that
“real” topological charges tend to neutralize local
smeared Gaussian curvature topological charges [19].

In our simulations we introduce a characteristic
linear scale R which measures the width of the central
part of axially symmetric structures. An important role
is dso played by the nematic order parameter
correlation length which we define in the nematic
phase as
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For a given geometry, defined by dimensionless
parameters a=alR,f=blIR, y=clR, we

calculated numerically equilibrium LC structures deep
in the nematic phase, where details are given in
[13, 16].

Numerical simulations

We numerically investigate impact of curvature
on position and number of TDs within thin nematic
LC shells exhibiting spherical topology. The latter
enforces the total topological charge m=2. Simple
2D XY modelling suggests that interactions among
TDs and their coupling with the Gaussian curvature
bears strong analogy with electrostatics [19].
According to this analogy TDs possessing positive
(negative) m are attracted to regions exhibiting
maximal positive (minimal negative) value of K. To
test validity of these predictions in our more complex
description, based on the tensorial order parameter
exhibiting quadrupolar symmetry, we continuously
vary local curvature of LC films, while preserving the
axia rotational symmetry of geometries, and monitor
behaviour of TDs. Of particular interest is whether
geometries with neighbouring regions exhibiting
positive and negative K could trigger unbinding of
pairs (m = 1/2, m =-1/2) of TDs.

In simulations we focus on impact of spatially
dependent Gaussian curvature on position and humber
of TDs. In Fig. 1 we plot some representative spatial
profiles of K in structures of our interest. Different
patterns of TDs are depicted in Fig. 2. In our
simulations we originated from a perfect spherical
geometry or radius R. In this case the Gaussian
curvature K = 1/R? is spatially constant and positive.
Within our minimal model we obtain four m = 1/2
TDs (see the 1% row of Fig. 2) as aready predicted by
Vitteli and Nelson [11] using smpler model and also
studied in detail in [13, 16]. In this case relative
positions of TDs are dominated by their mutua
repulsion. Consequently, they occupy vertices of a
“virtua tetrahedron” touching the spherical surface in
order to maximise their mutual separation.

We proceed by continuously squeezing the shell
geometry, while preserving the mirror symmetries (see

the configurations below the 1% row in Fig. 2), in order
to introduce regions with K<0 in the neck of resulting
structures as shown in Fig. 1. We henceforth refer to
the upper and bottom region with K > 0 as the positive
Gaussian surfaces and to the neck area exhibiting K<0
as the negative Gaussian surface. One sees (Fig. 2, the
2" row) that four TDs with m >0 tend to move
towards regions exhibiting maxima positive K as
expected. Thisis clearly visible by comparing A(u,v)
and 7i(u,v) configurationsin the 1% and 2™ row.

When a value of K <0 within the neck area
reaches the critical value, it triggers local nucleations
of two pairs of TDs. Here each pair consists of
(m=12m=-1/2). A typical configuration is shown
in the 3 row in Fig. 2. Two created TDs bearing
m=12 (m=-12) are dter their creation pushed
towards areas exhibiting maximal positive (maximal
negative) value of K in order to partially screen the
effective smeared Gaussian curvature topological
charge.

1.0
Shell
parameters:
0.8 - o=1.9,
p=1.2,
v=0.2
—a=1.9,
0.6 B=1.5,
v=0.5
‘“S =19,
0.4_ El:l,T,
0.2
oo
-4 0 4 8 12

Fig. 1. Spatial variation of the Gaussian curvature.
The resulting structures possess surface patches exhibiting
K>0and K<0. £/R=6.

On further sgueezing the geometry additional
two pairs (m = 1/2, m = -1/2) of TDs appear, see the
4™ row in Fig. 2. The resulting equilibrium profile
consists now of four m = 1/2 TDs within each positive
Gaussian surface and four m =-1/2 TDs within the
negative Gaussian surface, respectively.
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Fig. 2. The nematic order parameter spatial variations within thin LC layers. The left column: Colour plot of A within LC
layers covering different closed geometries exhibiting spherical topology, enforcing m, = 2. The middle column: Spatial
variation of A in the (u,v) plane. The right column: the director field orientation within the (x,v) plane. The 1%
(x=p=1 y=0)and 2™ row (=19, =12, y=0.2): four TDs with m=1/2. The 3 row (a=19, f=1.2, y =0.5):
eight TDs, six TDswith m = 1/2 and two with m = -1/2. The 4" row (az=1.9, f#=1.2, y =0.7): twelve TDs, eight TDs with
m = 1/2 and four with m = -1/2. The corresponding plots of K asshowninFig. 1. R/ £=6.
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Note that further squeezing the structures do not any
more qualitatively change configurations of TDs.
Namely integration over each positive Gaussian
surface yields Am,=-2. On the other hand the

integration over the negative Gaussian surface yields
Am,=2. Therefore, the total compensation of these

smeared Gaussian topological charges within each
positive (negative) Gaussian surface requires presence
of four m = 1/2 (m = -1/2) TDs, respectively, in order
to fulfil Eq. (2).

Conclusions

We studied impact of the Gaussian curvature in
effectively 2D LC surfaces exhibiting in-plane
orientational order. We consider axially symmetric
closed structures, also referred to as nematic shells. In
particular we focus on dumb-bell shells possessing
spherical topology. In this case the total topological
charge within a shell equals m = 2.

We use a Landau-type minimal model where the
degree of local orientational ordering is described in
terms of the tensor order parameter. Equilibrium
profiles were calculated by numerical minimization of
the free energy functional. Due to the approximation
of equal nematic elastic constants we obtain within a
spherical shell four TDs bearing m = 1/2 residing in
vertices of a hypothetical tetrahedron in line with
previous studies [11]. Such configuration of TDs
maximizes their mutual separation. On gradualy
sgueezing initial spherical geometry we aobtain dumb-
bell geometries, possessing regions exhibiting both
positive and negative local Gaussian curvatures. One
sees that in initial stages the four m = 1/2 tend to be
pushed towards regions exhibiting maximal Gaussian
curvature as the electrostatic analogy suggests [19].
According to it “real” discrete topological charges
tend to neutralise the locally smeared Gaussian
topological charge concentrated within regions
displaying maximal values of K. On further squeezing
the geometry the Gaussian curvature at the neck of
dumb-bell becomes negative enough to trigger
unbinding of two pairs (m = 1/2, m =-1/2) of TDs in
order to more efficiently compensate Am,, . Findly, in

relatively strongly distorted dumb-bell structure we
obtain completely compensated Gaussian topological
charges in dl areas of adumb-bell structure.

Results of our simulations are of interest also for
research dealing with biologica membranes [20-23].
Namely, as first pointed out in [20] the coupling

between in-plane ordering within a membrane and its
curvature might have strong impact on the membrane
shape. In particular presence of TDs in ordering gives
rise to presence of spatia inhomogeneities which
might enable local membrane processes important for
biological cell viability.
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