УДК 532.783

Е. М. Аверьянов

ТЕМПЕРАТУРНЫЕ ЗАВИСИМОСТИ ПОКАЗАТЕЛЕЙ ПРЕЛОМЛЕНИЯ ОДНООСНЫХ КАЛАМИТНЫХ ЖИДКИХ КРИСТАЛЛОВ С ВЫСОКИМ ДВУПРЕЛОМЛЕНИЕМ

Институт физики им. Л. В. Киренского, ФИЦ КНЦ СО РАН, Академгородок, 50, 660036 Красноярск, Россия. E-mail: aver@iph.krasn.ru

Температурные зависимости показателей преломления $n_j(t)$ и величин $\langle n(t) \rangle = (n_{\parallel} + 2n_{\perp})/3$, $\overline{n}(t) = \overline{\varepsilon}^{1/2}$, $\overline{\varepsilon} = (\varepsilon_{\parallel} + 2\varepsilon_{\perp})/3$, $\varepsilon_i = n_i^2$ для световых волн с поляризацией вдоль $(j = \parallel)$ и нормально директору $(j = \perp)$ в одноосных каламитных жидких кристаллах (ЖК) исследованы в рамках микроскопического подхода с учетом анизотропии тензора локального поля $f_i(t) = 1 + L_i(t) [\varepsilon_i(t) - 1]$ и тензора Лорентца $L_i(t)$. Показано, что известные отрицательные производные $\langle n(t) \rangle' = d \langle n(t) \rangle / dt$, \overline{n}' и точка t_o минимума на зависимости $n_{\perp}(t)$ в каламитных ЖК отвечают малым и средним значениям двупреломления $\Delta n = n_{\parallel} - n_{\perp}$. Для ЖК с высокими величинами Δn и компонентами L_{\perp} , превышающими пороговое значение $L_{\perp e}(n_i)$, предсказаны два новых эффекта: положительные значения $\langle n
angle', \ \overline{n}'$ и наличие точки t_e максимума на зависимости $n_{\parallel}(t).$ Для ряда нематиков с высокими значениями ∆п определены компоненты L_i(t), подтверждено наличие предсказанных эффектов и условий их проявления, получены значения t_e и прослежена их связь с величиной ∆п. Выяснены особенности перехода от ЖК с точкой t_o к ЖК с точкой t_e по мере роста Δn.

Ключевые слова: жидкие кристаллы, температурные зависимости показателей преломления.

DOI: 10.18083/LCAppl.2018.2.53

E. M. Aver'yanov

TEMPERATURE DEPENDENCES OF THE REFRACTIVE INDICES OF UNIAXIAL CALAMITIC LIQUID CRYSTALS WITH HIGH BIREFRINGENCE

Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 50 Akademgorodok, Krasnoyarsk, 660036, Russia. E-mail: aver@iph.krasn.ru

The temperature dependences of the refractive indices $n_i(t)$ and the values $\langle n(t) \rangle = (n_{\parallel} + 2n_{\perp})/3$, $\overline{n}(t) = \overline{\varepsilon}^{1/2}$, $\overline{\varepsilon} = (\varepsilon_{\parallel} + 2\varepsilon_{\perp})/3$, $\varepsilon_i = n_i^2$ for the light waves polarized along $(j = \parallel)$ and across $(j = \perp)$ the director in uniaxial calamitic liquid crystals (LCs) were studied within the microscopic approach with taking into account the anisotropy of the local-field tensor $f_i(t) = 1 + L_i(t)[\varepsilon_i(t)-1]$ and the Lorentz tensor $L_i(t)$. The known negative derivatives $\langle n(t) \rangle' = d \langle n(t) \rangle / dt$, \overline{n}' and the point t_o of minimum at the dependence $n_{\perp}(t)$ for calamite LCs were shown to correspond to small and medium values of the birefringence $\Delta n = n_{\parallel} - n_{\perp}$. For LCs with high values of Δn and components L_{\perp} exceeding the threshold value $L_{\perp e}$ two new effects were predicted: positive derivatives $\langle n \rangle'$, \overline{n}' and the presence of the point t_e of maximum at the dependence $n_{\parallel}(t)$. For a number of nematics with high values of Δn the components $L_i(t)$ were determined, the presence of the predicted effects and the conditions for their manifestation were confirmed, the values t_e were obtained and their connection with the magnitude Δn were established. The features of the transition from LCs with point t_o to LCs with point t_e under gradual increase in Δn were cleared up.

Key words: liquid crystals, temperature dependences of the refractive indices.

[©] Аверьянов Е. М., 2018

Введение

Оптимизация параметров жидких кристаллов (ЖК) в известных областях их практического использования и расширение горизонта новых возможностей требуют понимания молекулярной природы известных и выяснения новых свойств этих объектов. В данном аспекте актуальна связь оптических свойств ЖК со свойствами молекул, их структурной упорядоченностью и межмолекулярными взаимодействиями, поскольку оптический отклик этих объектов на изменение термодинамических условий и внешние воздействия лежит в основе современных практических применений ЖК. В большей степени это относится к величине и температурной зависимости n_i(t) показателей преломления одноосных каламитных ЖК (нематиков, холестериков, смектиков) для световых волн, поляризованных вдоль (j = ||) и нормально ($j = \bot$) оптической оси.

Для ЖК с малым и средним двупреломлением $\Delta n = n_{\parallel} - n_{\perp}$, которые исследовались до сих пор, были экспериментально установлены: основные особенности изменения $n_i(t)$ и $\Delta n(t)$ в пределах одноосных фаз и при переходах между ними [1-3]; близкие к линейным температурные зависимости величин $\langle n(t) \rangle = (n_{||} + 2n_{\perp})/3$ [4–8], $\overline{n}(t) = \overline{\varepsilon}^{1/2}$ [9, 10] и $\overline{\varepsilon}(t) = (\varepsilon_{\parallel} + 2\varepsilon_{\perp})/3$ [7], где $\varepsilon_i = n_i^2$; отрицательный знак производных $\langle n \rangle' = d \langle n(t) \rangle / dt$, \overline{n} ' и $\overline{\epsilon}$ '; наличие точки t_0 минимума на зависимости $n_{\perp}(t)$ для ЖК с малыми значениями $\Delta n(t_0)$ [1– 3, 7, 8, 11, 12]. В рамках феноменологического подхода были теоретически установлены: связь разности $t_{\rm NI} - t_{\rm o}$ ($t_{\rm NI}$ – температура перехода нематик – изотропная жидкость) с величиной $\Delta n(t_0)$ и анизотропией молекулярной поляризуемости $\Delta \gamma$; связь между производными $\langle n \rangle', \overline{n}', \overline{\epsilon}'$ и значениями n_i , \overline{n} в точке t_0 [13]; снижение разности $t_{\rm NI} - t_0$ и производных $\langle n \rangle', \ \overline{n}', \ \overline{\epsilon}'$ в точке t_0 с ростом длины световой волны λ в видимой области прозрачности ЖК при нормальной дисперсии $n_i(\lambda)$ [14, 15]. Это позволяет варьировать положение t₀ и технические параметры ЖК-устройств за счет изменения молекулярных свойств.

В последнее время расширение ассортимента устройств фотоники на основе ЖК и совершенствование характеристик известных устройств данного типа поставило на повестку дня разработку ЖК-материалов с высокими значениями Δn (см. обзор [16]). Сейчас известно большое число одноосных каламитных ЖК данного типа с известными значениями $n_j(t,\lambda)$ (см. [17–22] и ссылки там). Цели настоящей работы: постановка вопроса о качественных отличиях одноосных каламитных ЖК с высокими значениями Δn от ЖК с малыми и средними значениями Δn в отношении характера зависимостей $n_j(t)$, $\langle n(t) \rangle$, $\overline{n}(t)$, $\overline{\varepsilon}(t)$ и знака производных $\langle n \rangle'$, \overline{n}' , $\overline{\varepsilon}'$; демонстрация этих отличий и их объяснение в рамках микроскопического подхода [23], а также их описание в рамках феномено-логического подхода [13–15]. Подчеркнем, что эти аспекты не обсуждались и не отмечались авторами работ [16–22] и цитированых там источников.

Результаты и обсуждение

Микроскопический анализ зависимостей n_i(t).

Рассмотрим одноосный каламитный ЖК, состоящий из одноосных молекул. В области прозрачности компоненты ε_j тензора диэлектрической проницаемости ЖК связаны с усредненными по молекулярному ансамблю компонентами γ_j тензора молекулярной поляризуемости соотношением [23]

$$\varepsilon_j(t) - 1 = 4\pi N(t) f_j(t) \gamma_j(t). \tag{1}$$

Здесь $N(t) = N_A \rho(t)/M$ – число молекул в единице объема ЖК, N_A – число Авогадро, $\rho(t)$ – плотность ЖК, M – молекулярный вес. Компоненты

$$f_j(t) = 1 + L_j(t)[\varepsilon_j(t) - 1]$$
 (2)

тензора локального поля связывают локальное поле $E_j^{(l)}(\omega) = f_j(\omega)E_j(\omega)$ световой волны, действующее на молекулу, с макроскопическим полем $E_j(\omega)$ световой волны в ЖК. Из (2) следует выражение

$$f_{j}' = L_{j}'(\varepsilon_{j} - 1) + \varepsilon_{j}'(f_{j} - 1)/(\varepsilon_{j} - 1).$$
(3)

Взятие логарифмической производной по температуре от обеих частей формулы (1) и использование выражения (3) дает соотношение

 $\varepsilon_{j}' = f_{j}(\varepsilon_{j} - 1)[\rho'/\rho + \gamma_{j}'/\gamma_{j} + L_{j}'(\varepsilon_{j} - 1)/f_{j}].$ (4) Для одноосных фаз ЖК выполняется $\rho' < 0.$

Компоненты тензора Лорентца L_j ($L_{\parallel}+2L_{\perp}=1$) зависят от температуры ЖК из-за их связи [23]

 $L_{\parallel}(t) = 1/3 + 2\tau_0 S(t),$ $L_{\perp}(t) = 1/3 - \tau_0 S(t)$ (5) с параметром ориентационного порядка молекул $S(t) = \langle 3\cos^2\theta - 1 \rangle /2$ [24], где θ – угол между длинной осью молекулы и директором ЖК, скобки $\langle ... \rangle$ означают усреднение по молекулярному ансамблю. Для одноосных каламитных ЖК величина $\tau_0 = \tau(T = 0 \text{ K}, S = 1)$ подчиняется ограничениям $\tau_0 < 0, \max(|\tau_0|) \le 1/6$ [23, 25, 26]. Температура T(t)относится к шкале Кельвина (Цельсия). С учетом (5) имеем

$$L_{\parallel}' = -2|\tau_0|S', \qquad L_{\perp}' = |\tau_0|S'. \tag{6}$$

Для одноосных фаз ЖК выполняется S' < 0, в соответствии с чем $L_{\parallel}' > 0$ и $L_{\perp}' < 0$. Это отвечает экспериментальным зависимостям $L_i(t)$ [23, 27, 28]. Компоненты $\gamma_i(t)$ даются выражением

$$\gamma_j(t) = \overline{\gamma}(t) + c_j \Delta \gamma(t) S(t)$$

(7)с коэффициентами $c_{\parallel} = 2/3$, $c_{\perp} = -1/3$. Среднее значение $\overline{\gamma} = (\gamma_l + 2\gamma_t)/3$ и анизотропия $\Delta \gamma = \gamma_l - \gamma_t$ молекулярной поляризуемости зависят от продольной (уі) и поперечной (уі) компонент поляризуемости. Зависимости $\overline{\gamma}(t)$, $\Delta\gamma(t)$ обусловлены изменением плотности упаковки молекул, их ориентационной упорядоченности и межмолекулярных взаимодействий с изменением температуры и фазового состояния ЖК [27-30]. В общем случае производные $\Gamma' = d\Gamma/dt$ от величин $\Gamma\{\overline{\gamma}, \Delta\gamma\}$ представимы в следующей форме

$$\Gamma' = (\partial \Gamma / \partial t)_S + (\partial \Gamma / \partial S)_t S'.$$
(8)

В соответствии с экспериментом [27-30], слагаемым $(\partial \Gamma / \partial t)_S$ можно пренебречь, поскольку зависимость $\Gamma(t)$ обусловлена изменением S(t) вследствие связи [28,29]

$$\Gamma(S) = \Gamma_0(\lambda) + \sum_{k \ge 2} \Gamma_k(\lambda) S^k .$$
(9)

Величина $\Gamma_0(\lambda)$ совпадает со значением $\Gamma_i(\lambda)$ в изотропной фазе, для которой зависимость $\overline{\gamma}_i(t)$ очень слабая вследствие высокоточного эмпирического соотношения [23]

$$\frac{4\pi N_A}{3M}\overline{\gamma}_i(t) = \frac{\varepsilon_i - 1}{\rho_i(\varepsilon_i + 2)} \approx const .$$
 (10)

Здесь $\varepsilon_i = n_i^2$, $n_i(t)$ и $\rho_i(t)$ – показатель преломления и плотность изотропной фазы ЖК. В формуле (9) определяющий вклад в изменение Г(S) дает слагаемое $\propto S^2$, ограничиваясь которым имеем

$$\Gamma' = 2(\Gamma - \Gamma_0)S'/S. \tag{11}$$

С учетом этого производная γ_i' принимает вид

$$\gamma_{j}' = c_{j}S'\Delta\gamma[1 + 2(\Delta\gamma - \Delta\gamma_{0})/\Delta\gamma + 2(\overline{\gamma} - \overline{\gamma}_{0})/(c_{i}S\Delta\gamma)].$$
(12)

Для большого числа ЖК [27-30] сумма дробных слагаемых в квадратных скобках (12) много меньше единицы, с учетом чего можно принять

$$\gamma_{\parallel}' = 2S' \Delta \gamma/3, \qquad \gamma_{\perp}' = -S' \Delta \gamma/3. \tag{13}$$

Для анализа зависимостей $n_i(t)$, $\langle n(t) \rangle$, $\overline{n}(t)$, $\overline{\varepsilon}(t)$ и знака производных $\langle n \rangle', \bar{n}', \bar{\epsilon}'$ выражения (4), (6), (13) дополним соотношением

$$\overline{\varepsilon}(t) = \langle n(t) \rangle^2 + (2/9) [\Delta n(t)]^2.$$
(14)

Наличие точки t_0 минимума функции $n_1(t)$ и характер зависимостей $\langle n(t) \rangle$, $\overline{n}(t)$. С учетом (6), (13) преобразуем формулу (4) к виду

 $\varepsilon_{\perp}' = f_{\perp}(\varepsilon_{\perp} - 1)[\rho'/\rho + S'|\tau_0|(\varepsilon_{\perp} - 1)/f_{\perp} - S'\Delta\gamma/(3\gamma_{\perp})].$ (15) В квадратных скобках (15) два первые слагаемые отрицательны, а третье положительно и возможна их взаимная компенсация в точке t_0 с $\epsilon_{\perp}'(t_0) = 0$. При этом должно выполняться соотношение

 $\rho'/\rho = [S'/(3Sf_{\perp})] \{S\Delta\gamma f_{\perp}/\gamma_{\perp} - 3S|\tau_0|(\varepsilon_{\perp} - 1)\}_o. \quad (16)$ Одинаковый знак производных р', S' диктует условие $\{\ldots\}_0 > 0$. Учтем связь $S\Delta \gamma = \gamma_{\parallel} - \gamma_{\perp}$ и используем обозначения $\alpha_i = \varepsilon_i - 1$, $\Delta \alpha = \Delta \varepsilon = \varepsilon_{\parallel} - \varepsilon_{\perp}$, x = $S|\tau_0| = L_{\perp} - 1/3$. С учетом формул (1), (2), (5) неравенство $\{...\}_0 > 0$ преобразуется в следующее

 $x^{2} + 4x\Delta\alpha/(9\alpha_{\parallel}\alpha_{\perp}) + \Delta\alpha(3 + \alpha_{\perp})/(27\alpha_{\parallel}\alpha_{\perp}^{2}) > 0.$ (17) Оно выполняется при $x(t_0) \ge 0$, или $L_1(t_0) \ge 1/3$, и не критично к знаку анизотропии $\Delta f(t_0) = f_{\parallel} - f_{\perp}$. Действительно, точка to наблюдается в ЖК с низкими значениями $(L_{\perp} - 1/3)$ при $\Delta f > 0$ [12, 13] и в ЖК с достаточно высокими значениями (L₁ – 1/3) при $\Delta f < 0$ [15, 30].

Наличие to в основном обусловлено конкуренцией первого и третьего слагаемых в (15), а второе дает поправку к зависимости $\rho'(t)$. Это подтверждает предположение [2, 3] о конкуренции зависимостей $\rho(t)$ и S(t) как причине появления точки t_0 . При $\rho'(t) \approx const$ низким значениям $\Delta \gamma$ отвечают более высокие значения $S'(t_0)$, чему соответствует рост t_0 и приближение к $t_{\rm NI}$. Это согласуется с экспериментом [3, 7, 8, 13]. Для фиксированного ЖК более высоким значениям λ отвечают более низкие значения $\Delta \gamma(\lambda)$ и более высокие величины $t_0(\lambda)$, что также соответствует эксперименту [1, 2, 14].

Для выяснения ограничений на to используем аппроксимации

 $\Delta n(T) = \Delta n_0 (1 - T/T_1)^{\beta}, \quad \langle n(t) \rangle = B_0 + B_1 t$ (18)с подгоночными параметрами $\Delta n_0 = \Delta n(T = 0 \text{ K}),$ $T_1 > T_{\rm NI}, \beta, B_0, B_1$, которые определяются методом наименьших квадратов. Поскольку $n_{\perp} = \langle n \rangle - \Delta n/3$, значению to отвечает связь

$$B_1 = \langle n \rangle'(t_0) = \Delta n'(t_0)/3.$$
⁽¹⁹⁾

Формуле (18) соответствует производная

$$\Delta n'(T) = -\beta \Delta n(T)/(T_1 - T).$$
⁽²⁰⁾

При всех температурах $\Delta n'(T) < 0$ и точка T_0 возможна при $B_1 < 0$. Из (19) с учетом (20) следует

$$T_1 - T_0 = \beta \Delta n(T_0) / (3|B_1|).$$
 (21)

Минимальное значение $T_0 = 0$ К отвечает минимальной величине

$$|B_{10}| = \beta \Delta n_0 / (3T_1), \qquad (22)$$

которая определяется параметрами функции $\Delta n(T)$. Для наличия точки $T_0 > 0$ К необходимо выполнение неравенств $B_1 < B_{10} < 0$.

Зависимость $\overline{n}(t)$ часто аппроксимируют функцией

$$\overline{n}(t) = b_0 + b_1 t \tag{23}$$

с коэффициентами, определяемыми методом наименьших квадратов. В действительности при достаточно точном выполнении (18) функция $\overline{n}(t) = \langle n \rangle [1 + 2(\Delta n)^2/(9\langle n \rangle^2)]^{1/2}$ выпукла вверх (особенно в нематической фазе вблизи $t_{\rm NI}$) за счет слагаемого $\propto (\Delta n)^2$ в подкоренном выражении. Это, в частности, видно на рисунках работы [9]. Дифференцирование обеих частей формулы (14) по температуре и учет формулы (20) дает связь

 $\overline{n} \ \overline{n}' = \langle n \rangle' \langle n \rangle - 2\beta (\Delta n)^2 / [9(t_1 - t)].$ (24) При $\langle n \rangle' = B_1 < 0$ выполняются неравенства $b_1 < B_1$ и $|b_1| > |B_1|$. При выполнении соотношения

 $|\overline{n}'(t_n)| = 2\beta[\Delta n(t_n)]^2 / [9 \overline{n}(t_n)(t_1 - t_n)]$ (25) в некоторой точке t_n возможно $\langle n \rangle'(t_n) = 0.$

Наличие точки t_e максимума функции $n_{\parallel}(t)$ и характер зависимостей $\langle n(t) \rangle$, $\overline{n}(t)$. С учетом (6), (13) преобразуем формулу (4) к виду

 $\varepsilon_{\parallel}' = f_{\parallel}(\varepsilon_{\parallel} - 1)[\rho'/\rho + 2S'\Delta\gamma/(3\gamma_{\parallel}) - 2S'|\tau_0|(\varepsilon_{\parallel} - 1)/f_{\parallel}].$ (26) Здесь в квадратных скобках два первые слагаемые отрицательны, а третье положительно. Их взаимная компенсация в точке t_e дает $\varepsilon_{\parallel}'(t_e) = n_{\parallel}'(t_e) = 0.$ Это возможно при достаточно высоких значениях $|\tau_0|$ (L_{\perp}), ε_{\parallel} , γ_{\parallel} и достаточно низких значениях f_{\parallel} , $\Delta\gamma$. Условие $\varepsilon_{\parallel}'(t_e) = 0$ аналогично соотношению

 $\rho'/\rho = [2S'/(3Sf_{\parallel})] \{3S|\tau_0|(\varepsilon_{\parallel} - 1) - S\Delta\gamma f_{\parallel}/\gamma_{\parallel}\}_e$ (27) при $\{\dots\}_e > 0$. С учетом параметров, входящих в (17), и формул (1), (2), (5) неравенство $\{\dots\}_e > 0$ эквивалентно следующему

 $x^2 + 5x\Delta\alpha/(9\alpha_{\parallel}\alpha_{\perp}) - \Delta\alpha(3 + \alpha_{\parallel})/(27\alpha_{\parallel}^2\alpha_{\perp}) > 0.$ (28) Оно выполняется при $L_{\perp} > L_{\perp e}$, где

$$L_{\perp e}(\alpha_j) = 1/3 + [5\Delta\alpha/(18\alpha_{\parallel}\alpha_{\perp})]\{[1 + \alpha_{\parallel}\alpha_{\perp})\}$$

+ $12\alpha_{\perp}(3 + \alpha_{\parallel})/(25\Delta\alpha)]^{1/2} - 1$ }. (29) Для дальнейшего анализа введем параметр $L_{\perp k} = (3 + 2Q)/[3(3 + Q)]$, где $Q = \Delta \varepsilon / (\bar{\varepsilon} - 1)$. Переходя в (29) от величин α_j к переменным Q, $\bar{\varepsilon}$ и используя связь $Q = 3(3L_{\perp k} - 1)/(2 - 3L_{\perp k})$, получаем функцию

$$L_{\perp e}(u,\bar{\varepsilon}) = 1/3 + \frac{5(3u-1)(2-3u)}{54u(1-2u)(\bar{\varepsilon}-1)} \times \left\{ \left[1 + \frac{36(1-2u)[2+u(\bar{\varepsilon}-4)]}{25(3u-1)(2-3u)} \right]^{1/2} - 1 \right\}, \quad (30)$$

где для компактной записи принято $L_{\perp k} = u$. Для одноосных сред различной природы зависимость экспериментальных значений $L_{\perp}(t)$ от химических свойств структурных единиц, образующих эти среды, характеризует параметр $\eta(t) = \langle L_{\perp k}(\lambda_q, t) \rangle_q$ [26], полученный усреднением $\langle ... \rangle_q$ величин $L_{\perp k}(\lambda_q, t)$ по дискретному набору значений λ_{1-p} , при которых показатели преломления $n_j(\lambda_q, t)$ в видимой области прозрачности данной среды используются для определения $L_{\perp}(t)$ [25]. При заданном t параметры $\eta(t)$ и $L_{\perp k}(t, \lambda_q)$ различаются незначительно. Для сред с $\Delta \varepsilon > 0$ корреляция $L_{\perp}(\eta)$ аппроксимируется функцией [26]

 $L_{\perp}(\eta) = \eta + (\eta - 1/3)(0,5 - \eta)(33,617 - 56,337\eta).$ (31) Зависимости (30), (31) показаны на рис. 1.

Рис. 1. Зависимости (31) (1), $L_{\perp} = L_{\perp k}$ (2) и (30) при $u = L_{\perp k}$ для $\overline{\epsilon} = 2,5$ (3), 3 (4) и 3,5 (5)

Fig. 1. Dependences (31) (1), $L_{\perp} = L_{\perp k}$ (2) and (30) with $u = L_{\perp k}$ for $\overline{\epsilon} = 2,5$ (3), 3 (4) and 3,5 (5)

Из него следует, что точка t_e возможна при значениях $\eta(t_e)$ и $L_{\perp k}(t_e)$, для которых выполняется условие $L_{\perp}(\eta) > L_{\perp e}(L_{\perp k}, \overline{\epsilon})$, причем в области $\eta > 0,38$ зависимость $L_{\perp e}(L_{\perp k})$ слабая и значения $L_{\perp e}$ снижаются с ростом $\overline{\epsilon}(t_e)$. В области высоких значений η и $L_{\perp k}$ неравенство $L_{\perp} > L_{\perp e}$ возможно как при $L_{\perp} > L_{\perp k} > L_{\perp e}$ с $\Delta f(t_e) < 0$, так и при $L_{\perp k} > L_{\perp} > L_{\perp e}$

с $\Delta f(t_e) > 0$. При фиксированной температуре ЖК переход от $L_{\perp} > L_{\perp k}(\lambda)$ к $L_{\perp k}(\lambda) > L_{\perp}$ возможен с ростом $L_{\perp k}(\lambda)$ при снижении λ и переходе через точку λ_0 изотропизации $\Delta f(\lambda_0) = 0$ при $L_{\perp} = L_{\perp k}(\lambda_0)$ [23].

Поскольку $n_{\parallel} = \langle n \rangle + 2\Delta n/3$, значению $t_{\rm e}$ отвечает связь

$$B_1 = \langle n \rangle'(t_e) = -2\Delta n'(t_e)/3.$$
 (32)

Точка t_e возможна при $B_1 > 0$. Отсюда с учетом (20) получаем

$$T_1 - T_e = 2\beta \Delta n(T_e)/(3B_1).$$
 (33)

Сравнение этой формулы с (21) показывает, что при близких по абсолютной величине значениях B_1 и параметрах β вследствие $\Delta n(T_e) > \Delta n(T_o)$ величины $T_1 - T_e$ значительно больше типичных значений $T_1 - T_o$ [1–3, 7, 8, 11–15]. Минимальное значение $T_e = 0$ К отвечает минимальной величине

$$B_{1e} = 2\beta \Delta n_0 / (3T_1). \tag{34}$$

Для наличия точки $T_e > 0$ К необходимо выполнение неравенств $B_1 > B_{1e} > 0$. Подстановка $\Delta n(T_e)$ из (18) в (33) дает выражение

$$T_{1} - T_{e} = T_{1} \left[\frac{2\beta \Delta n_{0}}{3B_{1}T_{1}} \right]^{1/(1-\beta)}.$$
 (35)

По мере роста λ в видимой области прозрачности ЖК при малом изменении T_1 , β , B_1 и заметном снижении Δn_0 следует ожидать снижения $t_1 - t_e$ и повышения $t_e(\lambda)$ аналогично повышению $t_o(\lambda)$ [14].

В окрестности t_e зависимость $n_{\parallel}(t)$ имеет вид

 $n_{\parallel}(t) = n_{\parallel}(t_{\rm e}) + \kappa_2(t - t_{\rm e})^2 + \kappa_3(t - t_{\rm e})^3 + \dots$ (36) Из-за больших значений $t_1 - t_{\rm e}$ коэффициенты

 $\kappa_2 = -B_1(1-\beta)/[2(t_1-t_e)], \ \kappa_3 = \kappa_2(2-\beta)/[3(t_1-t_e)]$ (37) малы и в широкой окрестности точки t_e зависимость $n_{\parallel}(t)$ слабая.

В соответствии с формулой (24), при $\langle n \rangle' = B_1 > 0$ имеем $b_1 < B_1$. При выполнении соотношения

 $\langle n \rangle'(t_{\varepsilon}) = 2\beta[\Delta n(t_{\varepsilon})]^2/[9\langle n(t_{\varepsilon})\rangle(t_1 - t_{\varepsilon})]$ (38) в некоторой точке t_{ε} возможно равенство $\overline{n}'(t_{\varepsilon}) = \overline{\varepsilon}'(t_{\varepsilon}) = 0$. При неизменных параметрах формул (18) в области температур, включающих значения t_{ε} и t_{e} , из (38) с учетом (33) следует связь

 $t_1 - t_{\varepsilon} = (t_1 - t_{e})[\Delta n(t_{\varepsilon})]^2 / [3\Delta n(t_{e})\langle n(t_{\varepsilon})\rangle]$ (39) и $(t_1 - t_{\varepsilon}) << (t_1 - t_{e})$. Для микроскопического анализа функции $\overline{\varepsilon}'(t)$ использование формул (15), (26) дает выражение

$$3 \bar{\epsilon}' = (\rho'/\rho)[f_{\parallel}(\epsilon_{\parallel} - 1) + 2f_{\perp}(\epsilon_{\perp} - 1)] - 2S' \{|\tau_0|[(\epsilon_{\parallel} - 1)^2 - (\epsilon_{\perp} - 1)^2] + (\rho_{\perp}(\epsilon_{\parallel} - 1)^2) - (\epsilon_{\perp} - 1)^2] + 2S' \{|\tau_0|[(\epsilon_{\parallel} - 1)^2 - (\epsilon_{\perp} - 1)^2] + (\rho_{\perp}(\epsilon_{\parallel} - 1)^2) + (\rho_{\perp}(\epsilon_{\parallel} - 1)^2) \}$$

+ $(\Delta \gamma/3)[f_{\perp}(\varepsilon_{\perp}-1)/\gamma_{\perp}-f_{\parallel}(\varepsilon_{\parallel}-1)/\gamma_{\parallel}]$ }. (40) Знак функции $\overline{\varepsilon}'(t)$ определяется конкуренцией отрицательного слагаемого $\propto \rho'$ и положительного слагаемого $\propto S'$, относительный вклад которых зависит от анизотропии компонент ε_j , L_j и f_i . Условие $\overline{\varepsilon}'(t_{\varepsilon}) = 0$ эквивалентно соотношению

$$(\rho'/\rho)[f_{\parallel}(\varepsilon_{\parallel}-1)+2f_{\perp}(\varepsilon_{\perp}-1)] =$$

$$= [2S'/(3S)]\{3S|\tau_{0}|[(\varepsilon_{\parallel}-1)^{2}-(\varepsilon_{\perp}-1)^{2}] +$$

$$+ S\Delta\gamma[f_{\perp}(\varepsilon_{\perp}-1)/\gamma_{\perp}-f_{\parallel}(\varepsilon_{\parallel}-1)/\gamma_{\parallel}]\}_{\varepsilon}.$$
(41)

Положительный коэффициент при ρ' требует выполнения условия $\{...\}_{\varepsilon} > 0$. С учетом параметров, входящих в (17), и формул (1), (2), (5) неравенство $\{...\}_{\varepsilon} > 0$ эквивалентно требованию

 $3xf_{\parallel}f_{\perp}(\alpha_{\parallel}^2 - \alpha_{\perp}^2) + (\Delta \alpha + 3x\alpha_{\parallel}\alpha_{\perp})(f_{\perp}^2 - f_{\parallel}^2) > 0.$ (42) Подстановка сюда выражений для $f_j(\alpha_j,x)$ дает полином третьей степени относительно *x*. Его анализ будет проведен в другом месте. Пока же отметим, что условие (42) выполняется для всех известных одноосных ЖК с $\Delta \varepsilon > 0$ и экспериментальными значениями $L_{\perp}(t)$, которые в видимой области прозрачности удовлетворяют соотношениям $L_{\perp} > L_{\perp k}(\lambda)$ и $f_{\perp} > f_{\parallel}$ [23, 25–30]. Таким образом, наличие точки t_{ε} возможно для ЖК при условиях $B_1(\lambda) > 0$ и $L_{\perp} > L_{\perp k}(\lambda)$. Перейдем к экспериментальной проверке предсказанных эффектов.

Объекты исследования. Среди известных ЖК с высокими значениями $\Delta n(t,\lambda)$ были выбраны указанные ниже нематики, для которых имеются достаточно точные табличные или графические значения $n_j(t,\lambda_q)$ для дискретного набора величин λ_q в видимой области.

$H_7C_3O - \Phi_1 - C \equiv C - C \equiv C - \Phi_1 - OC_3H_7,$	1
$H_{13}C_6O-\Phi_1-C\equiv C-C\equiv C-\Phi_1-OC_6H_{13},$	2
$H_{19}C_9O-\Phi_1-C \equiv C-C \equiv C-\Phi_1-OC_9H_{19},$	3
$H_{25}C_{12}O - \Phi_1 - C \equiv C - C \equiv C - \Phi_1 - OC_{12}H_{25},$	4
$H_{13}C_6O-\Phi_2-C\equiv C-C\equiv C-\Phi_2-OC_6H_{13},$	5
$H_{13}C_6O-\Phi_2-C\equiv C-\Phi_3-C\equiv C-\Phi_2-OC_6H_{13},$	6
$H_{13}C_6O-\Phi_4-C\equiv C-\Phi_3-C\equiv C-\Phi_3-OC_6H_{13},$	7
$H_{13}C_6S-\Phi_2-C\equiv C-\Phi_3-C\equiv C-\Phi_2-SC_6H_{13},$	8
$H_3CS-\Phi_2-C\equiv C-\Phi_2-C\equiv C-\Phi_2-SCH_3,$	9
$H_3CS-\Phi_2-C\equiv C-\Phi_2-C\equiv C-\Phi_2-CN,$	10
$H_3CS-\Phi_2-C\equiv C-\Phi_2-C\equiv C-\Phi_2-NCS.$	11

Формулы фрагментов Ф1-Ф4 приведены ниже.

Молекулы данных ЖК имеют длинные и жесткие линейные остовы, все фрагменты которых и концевые

группы связаны цепью π-электронного сопряжения. Это обеспечивает высокие значения S, γ_{\parallel} , $\Delta \gamma$ и $\Delta n \propto$ S∆у. Удлинение концевых цепей в ряду гомологов 1– 4 и замена циклических фрагментов при переходе от 2 к 5 сопровождаются изменением средней плотности упаковки молекул, оказывающей влияние на значения *S*, γ_{\parallel} , $\Delta \gamma$, величины n_i и зависимости $n_i(t)$. Латеральное замещение фенильных колец в остовах ЖК 6-8 атомами фтора изменяет плотность латеральной упаковки молекул, температуру t_{NI} и значения n_i без заметного изменения Δn . Варьирование полярных терминальных групп в молекулах 9-11 влияет на их способность к образованию ассоциатов в нематической фазе [16]. Представляет интерес проявление всех этих факторов в рассмотренных выше особенностях изменения $n_i(t)$.

Анизотропия локального поля в ЖК 1–5. Как показано выше, анизотропия компонент $L_j(t)$ играет решающую роль в особенностях изменения $n_j(t)$ для ЖК с высокими значениями Δn . Известные экспериментальные значения L_j для ЖК данного типа относятся к нематической фазе сопряженных полимеров [26]. Для низкомолекулярных нематиков 1–5 здесь компоненты L_j определены методом [25]. Использовались параметры

$$r_{0} = \frac{2Q^{2}(\overline{\epsilon}-1)}{3(3+Q)(\overline{\epsilon}+2)}, \quad b = \frac{3(\overline{\epsilon}-1)}{4\pi N \overline{\gamma}(\overline{\epsilon}+2)} - r_{0},$$
$$b_{1} = \frac{2r_{0}Q^{2}}{(3-Q)(3+2Q)}, \quad b_{2} = b_{1}[(6+Q)/Q]^{2}, \quad (43)$$

которые зависят от температуры t и λ . Искомое значение L_{\perp} дается выражением

 $L_{\perp}(t) = L_{\perp k}(\lambda, t) - (\overline{\epsilon} + 2) \times$

×{ $(b_1b_2)^{1/2} - b - [(b_1 - b)(b_2 - b)]^{1/2}$ }/[12($\overline{\epsilon}$ - 1)]. (44) Функция $b(\lambda,t)$ зависит от неизвестной функции $N(t)\overline{\gamma}(\lambda,T)$. При известных значениях $n_j(\lambda_q,t)$ (q = 1 - p) в видимой области функция $b(\lambda,t)$ в интервале $\lambda_1 - \lambda_p$ аппроксимируется полиномом

 $b(\lambda,t) = a_0(t) + a_1(t)\lambda + ... + a_m(T)\lambda^m$. (45) Величина $L_{\perp}(t)$ не зависит от λ . Поэтому фиксированному значению *t* отвечают m + 2 неизвестных $\{L_{\perp}^{(m)}, a_0 - a_m\}$. Они находятся из системы m + 2 = pуравнений (44), каждое из которых отвечает одному из значений λ_q .

Для ЖК **1–5** использовались значения $\lambda_1 = 0,40$; $\lambda_2 = 0,45$; $\lambda_3 = 0,50$; $\lambda_4 = 0,55$ и $\lambda_5 = 0,65$ мкм. Для ЖК **1–4** экспериментальные значения $n_j(\lambda_{2,4,5})$ приведены в табл. 2 работы [17] при реперных температурах $t_{r1} = 210$ (**1**), $t_{r2} = 150$ (**2**), $t_{r3} = 145$ (**3**) и $t_{r4} = 140$ °С (4). Значения $t_{r(1-3)}$ (t_{r4}) на 10° выше температуры кристаллизации нематических фаз ЖК 1–3 (температуры перехода нематик – смектик С для ЖК 4). Величины $n_j(\lambda_{1,3})$ при значениях $t_{r(1-4)}$ для ЖК 1–4 получены из зависимостей $n_j(\lambda)$ в области $\lambda = 0,4-0,7$ мкм, представленных на рис. 4, *b* работы [17]. Для ЖК 5 величины $n_j(\lambda_{1-5})$ при $t_{r5} = 121$ °С получены из зависимостей $n_j(\lambda)$ в интервале $\lambda = 0,4-0,7$ мкм, представленных на рис. S3 (Electronic supplementary information) работы [18].

Для ЖК **1**, **4** и **5** с более точными значениями $n_j(\lambda_q)$ система пяти уравнений (44) имеет физические решения $L_{\perp}^{(3)}(t_{r1}) = 0,478$; $L_{\perp}^{(3)}(t_{r4}) = 0,465$ и $L_{\perp}^{(3)}(t_{r5}) = 0,443$. Для ЖК **2**, **3** с менее точными значениями $n_j(\lambda_q)$ система пяти уравнений (44) не имеет физических решений.

Рис. 2. Корреляции между значениями $L_{\perp}(t_r)$ и $L_{\perp k}(t_r, \lambda_4)$ (светлые символы), а также между значениями $L_{\perp e}(\lambda_4)$ и $L_{\perp k}(t_e, \lambda_4)$ (темные символы) при $\lambda_4 = 0,55$ мкм для жидких кристаллов, указанных цифрами. Сплошная линия – расчет по формуле (31). Штриховая и штрих-пунктирная линии – расчет по формуле (30) при $u = L_{\perp k}$ для $\overline{\epsilon} = 2,6$ и 3,0

Fig. 2. Correlations between values $L_{\perp}(t_r)$ and $L_{\perp k}(t_r,\lambda_4)$ (white symbols) as well as between values $L_{\perp e}(\lambda_4)$ and $L_{\perp k}(t_e,\lambda_4)$ (black symbols) at $\lambda_4 = 0.55 \mu m$ for liquid crystals specified by numbers. The solid line was calculated by the equation (31). The dashed and dot-dashed lines were calculated by the equation (30) with $u = L_{\perp k}$ for $\overline{\epsilon} = 2.5$ and 3.0 respectively

Однако для каждого из пяти возможных сочетаний по четыре значения λ_q из набора λ_{1-5} система четырех уравнений (44) имеет физическое решение $L_{\perp}^{(2)}(t_r)$ для каждого из ЖК **1–5**. Поэтому в

качестве величин $L_{\perp}(t_r)$ для этих ЖК приняты значения { $L_{\perp}^{(2)}(t_r)$ }, усредненные по пяти значениям $L_{\perp}^{(2)}(t_r)$. Для ЖК **1**, **4**, **5** величины $L_{\perp}^{(3)}(t_r)$ согласуются с { $L_{\perp}^{(2)}(t_r)$ } в пределах точности определения последних, чего и следовало ожидать [25]. Корреляция между значениями $L_{\perp}(t_r)$ и $L_{\perp k}(t_r, \lambda_4)$ для ЖК **1–5** показана на рис. 2. Из него следует, что для гомологов **1–4** точки $L_{\perp}(L_{\perp k})$ лежат в окрестности зависимости $L_{\perp}(\eta)$, даваемой формулой (31), что связано с близостью величин $L_{\perp k}(t_r, \lambda_4)$ и $\eta(t_r)$ для этих объектов. Рост L_{\perp} с укорочением концевых цепей молекул **1–4** подобен установленному ранее для нематиков и смектиков A со средними значениями Δn [30].

Анализ зависимостей $n_j(t)$, $\langle n(t) \rangle$. В настоящей работе для ЖК **1–8** (**9–11**) использованы значения $n_j(t)$ при $\lambda = 0,55$ мкм (0,55 и 0,7 мкм), измеренные в режиме охлаждения нематической фазы. Для ЖК **1–4** (**5**) значения $n_j(t)$ приведены на рис. 5 работы [17] (рис. 1 работы [19]). Для ЖК **6** и **7** (**8**) зависимости $n_j(t)$ представлены на рис. 4 работы [20] (рис. 3, *а* работы [21]). Зависимости $n_j(t)$ для ЖК **9–11** даны на рис. 3, *а* ($\lambda = 0,55$ мкм) и 4, *а* ($\lambda = 0,7$ мкм) работы [22]. Эти данные использовались здесь для получения зависимостей $\Delta n(t)$, $\langle n(t) \rangle$ и их аппроксимаций формулами (18) методом наименьших квадратов. Коэффициенты этих формул и другие величины представлены в таблице.

Из данных таблицы и рис. 2 следует, что для ЖК 1–5 выполняются неравенства $t_e < t_r$ и $L_{\perp}(t_e) >$ $L_{\perp}(t_r) > L_{\perp e}$, которые отвечают наличию точки t_e для этих объектов и условию $B_1 > 0$. Последнее видно для ЖК 4 на рис. 3, где экстраполированное из нематической фазы значение $\langle n(t_{\rm NI}) \rangle$ меньше величины $n_i(t_{\rm NI})$, а функция $n_i(t)$ убывает с ростом $t > t_{\rm NI}$. Из таблицы следует, что по мере удлинения концевых цепей молекул в ряду 1-2-4 при близких значениях β монотонное снижение Δn_0 и рост B_1 приводят к монотонному снижению разности $t_1 - t_e$ в соответствии с формулой (35). Монотонное снижение средней плотности упаковки молекул в 1-2-3-4 сопровождается монотонным ряду снижением величин $n_i(t_e), B_0, \overline{\epsilon}(t_e), L_{\perp k}(t_e)$ и ростом $|\kappa_{2,3}|, L_{\perp e}(t_e)$ при постоянстве t_e . То же наблюдается при снижении плотности латеральной упаковки молекул в ЖК с переходом от молекулы 6 к молекуле 7 с увеличением числа латеральнозамещенных фенильных колец при одинаковой длине концевых цепей. И наоборот, переход от 8 к 9

Таблица. Оптические параметры указанных ЖК при $\lambda = 0,55$ мкм (1-8, 91-111) и 0,7 мкм (92-112)

Table. Optical parameters of the specified liquid crystals at $\lambda = 0.55 \ \mu m \ (1-8, 9_1-11_1) \ \mu \ 0.7 \ \mu m \ (9_2-11_2)$

ЖК	t _{NI} , °C	<i>t</i> ₁ , °C	Δn_0	β	$t_1 - t_{\rm e}$, °C
1	$t \ge 260$	281,5	0,7962	0,2510	168,9
	decomp.				
2	230,8	234,4	0,6941	0,2683	117,9
3	195,0	187,5	0,4775	0,1626	66,3
4	177,7	175,2	0,5072	0,2418	58,4
5	147,5	149,6	0,4774	0,1643	94,2
6	211,9	217,8	0,5898	0,2055	139,0
7	178,8	181,3	0,5491	0,2144	131,5
8	139,6	138,8	0,6800	0,1953	104,9
9 1	246.4	250,0	1,0340	0,2374	132,9
9 ₂	240,4	250,3	0,8804	0,2329	95,2
101	283,4	299,7	1,0801	0,2922	_
102		313,0	0,9009	0,3060	526,1
111	284,0	333,9	1,2876	0,4405	_
112		321,3	1,0280	0,3874	574,0
ЖК	t _e , °C	B_0	$B_1 \cdot 10^4$,	$B_{1e} \cdot 10^4$,	$-\kappa_2 \cdot 10^6$,
			°C ⁻¹	°C-1	°C-2
1	112,6	1,6682	5,8533	2,4021	1,2979
2	116,6	1,6227	7,1179	3,1857	2,2089
3	121,2	1,5716	5,6967	1,3125	3,5981
4	116,8	1,5067	8,5567	1,8235	5,5585
5	55,4	1,5823	4,3394	1,2370	1,9259
6	78,8	1,6239	4,4851	1,6736	1,2818
7	49,8	1,5635	4,5746	1,7271	1,3663
8	34,3	1,6423	6,4756	2,1486	2,4911
9 1	117,1	1,6046	8,8923	3,1278	2,5507
92	154,4	1,4516	9,5991	2,6115	3,8383
101	_	1,8158	2,5032	3,6730	_
102	-213,1	1,6808	3,3798	3,1354	0,2229
111	_	1,7771	4,5208	6,2286	_
112	-252,7	1,6623	4,5631	4,4661	0,2435
ЖК	$n_{\parallel}(t_{\rm e})$	$n_{\perp}(t_{\rm e})$	$\overline{\epsilon}(t_{\rm e})$	$L_{\perp k}(t_{\rm e})$	$L_{\perp e}$
1	2,1280	1,5372	3,0848	0,4192	0,4239
2	2,0184	1,5493	2,9582	0,4072	0,4256
3	1,8670	1,5246	2,7190	0,3956	0,4313
4	1,8132	1,5034	2,6027	0,3920	0,4351
5	1,8550	1,4820	2,6112	0,4016	0,4368
6	1,9627	1,5076	2,7993	0,4088	0,4308
7	1,8669	1,4460	2,5557	0,4100	0,4404
8	2,0113	1,4911	2,8307	0,4164	0,4307
9 1	2,2066	1,4587	3,0416	0,4364	0,4267
9 ₂	1,9951	1,4021	2,6374	0,4303	0,4386
102	2,5555	1,3839	2,9726	0,4497	0,4294
112	2 2231	1 2090	2 6219	0.4723	0 4400

с укорочением концевых цепей молекулы и упразднением латерального заместителя в центральном фенильном кольце молекулы сопровождается увеличением плотности упаковки молекул с существенным ростом значений t_{NI} , t_e , Δn_0 , β , B_1 , $n_{\parallel}(t_e)$, $\overline{\epsilon}$ (t_e), $L_{\perp k}(t_e)$ при снижении $n_{\perp}(t_e)$, $L_{\perp e}(t_e)$.

Рис. 3. Значения $n_{\parallel}(1)$, $n_{\perp}(2)$, $n_i(3)$ [17] и $\langle n \rangle$ (4) для ЖК 4 при $\lambda = 0,55$ мкм. Сплошная линия – расчет по формуле (36) при учете слагаемого $\propto \kappa_2$. Штриховая линия – интерполяция значений $\langle n(t) \rangle$ формулой (18) и ее экстраполяция в область изотропной фазы

Fig. 3. The values $n_{\parallel}(1)$, $n_{\perp}(2)$, $n_i(3)$ [17] and $\langle n \rangle$ (4) for liquid crystal 4 at $\lambda = 0.55 \,\mu\text{m}$. The solid line was calculated by the equation (36) with accounting for term $\propto \kappa_2$. The dashed line was obtained by the interpolation (18) with their extrapolation into the isotropic phase

Для ЖК **1–8** с умеренно высокими значениями Δn_0 величины $t_1 - t_e$ значительно больше типичных величин $t_1 - t_o$ для ЖК с малыми и средними значениями Δn_0 . Это подтверждает следствия формулы (33). Для ЖК **1–8** при типичных значениях $t_1 - t_e \approx 100-170$ °С формула (36) хорошо описывает изменение $n_{\parallel}(t)$ в широком интервале температур при учете слагаемого $\propto \kappa_2$. Это видно на рис. 4 с плоской зависимостью $n_{\parallel}(t)$ для ЖК **2**.

Переход к ЖК **9–11** с высокими значениями $t_{\rm NI}$ и рекордно большими величинами Δn_0 даже в видимой области прозрачности сопровождается высокой чувствительностью параметров формул (18) к особенностям химической структуры молекул и дисперсии $n_j(\lambda)$. Для этих объектов с низколежащими длинноволновыми полосами электронного поглощения характерны высокие значения $B_{1\rm e}$ (34) и сильная дисперсия $B_{1\rm e}(\lambda)$ вследствие дисперсии $\Delta n_0(\lambda)$. Для ЖК **9** рекордно высокие значения B_1 при $\lambda = 0,55$ и 0,7 мкм удовлетворяют соотношению $B_1 > B_{1e}$, а величины $t_1 - t_e$ и t_e близки к тем же для ЖК **1** и **2**. Причем с ростом λ значение $t_e(\lambda)$ для ЖК **9** возрастает, что следует из (35) с учетом постоянства β и T_1 при снижении Δn_0 и росте B_1 .

Рис. 4. Значения n_{||} (1), n_⊥ (2) [17] и ⟨n⟩ (3) для ЖК 2 при λ = 0,55 мкм. Сплошная линия – расчет по формуле (36) при учете слагаемого ∝к₂. Штриховая линия – интерполяция значений ⟨n(t)⟩ формулой (18)

Fig. 4. The values $n_{\parallel}(1)$, $n_{\perp}(2)$ [17] and $\langle n \rangle$ (3) for liquid crystal **2** at $\lambda = 0.55 \,\mu\text{m}$. The solid line was calculated by the equation (36) with accounting for term $\propto \kappa_2$. The dashed line was obtained by the interpolation (18)

Для ЖК **10**, **11** наличие точки $T_e > 0$ К при $\lambda = 0,7$ мкм соответствует неравенству $B_1 > B_{1e}$, тогда как при $\lambda = 0,55$ мкм для этих объектов имеем $B_1 < B_{1e}$ и точка T_e отсутствует. Таким образом, для ЖК **10**, **11** рост λ индуцирует появление точки $T_e(\lambda) > 0$ К.

При $\lambda = 0,55$ мкм значение B_1 для ЖК **10** минимально для обсуждаемых объектов. Это указывает на возможное наличие точки $t_{\varepsilon} \ c \ \overline{n}'(t_{\varepsilon}) = 0$ в интервале аппроксимации (18). Действительно, зависимость $\overline{n}(t)$ на рис. 5 имеет форму колокола, а численное решение уравнения (38) на массиве эквидистантных температурных точек дает $t_{\varepsilon} \approx 221$ °C. Использование величин $n_i(t,\lambda)$ при $\lambda_4 = 0,55$ и $\lambda_6 =$ 0,7 мкм [22] в системе двух уравнений (44) дало для ЖК **10** значения $L_{\perp}(t) = L_{\perp}^{(0)}(t)$ и соотношения $L_{\perp}(t) > L_{\perp k}(t,\lambda_{4(6)}), f_{\perp}(t,\lambda_{4(6)}) > f_{\parallel}(t,\lambda_{4(6)})$. Они соответствуют требованию (42) и наличию точки t_{ε} в пределах нематической фазы этого ЖК.

Рис. 5. Значения $n_{\parallel}(1)$, $n_{\perp}(2)$ [22], $\langle n \rangle$ (3) и \overline{n} (4) для ЖК 10 при $\lambda = 0,55$ мкм. Сплошная линия – интерполяция значений $\langle n(t) \rangle$ формулой (18)

Fig. 5. The values $n_{\parallel}(1)$, $n_{\perp}(2)$ [22], $\langle n \rangle$ (3) and \overline{n} (4) for liquid crystal **10** at $\lambda = 0.55 \,\mu\text{m}$. The solid line was obtained by the interpolation (18)

Сиенарий перехода от ЖК с точкой Т_о к ЖК с *точкой T*_e. На основании известных особенностей ЖК с точкой *T*₀ и установленных здесь особенностей ЖК с точкой Те можно представить весьма упрощенный сценарий перехода от первых объектов ко вторым при постепенном росте Δn_0 за счет изменения химической электронной структур молекул при несу-И щественном изменении β. Величина и знак определяются конкуренцией коэффициента В₁ слагаемых в формулах (24), (40). При $B_1 < 0$ для ЖК с малыми Δn_0 , $\Delta \gamma$ и низкими L_{\perp} [23, 25, 26] разность $T_{\rm NI} - T_{\rm o}$ мала и точка $T_{\rm o}$ лежит вблизи $T_{\rm NI}$ [1–3, 7, 8, 11– 13]. С ростом Δn_0 , $\Delta \gamma$ и L_{\perp} разность $T_{\rm NI}-T_{\rm o}$ увеличивается и T_o смещается за пределы нематической фазы [14] или в область одноосных смектических фаз [2, 15]. Если рост Δn_0 и $|B_{10}|$ (22) приводит к нарушению неравенства $|B_1| > |B_{10}|$, то точка $T_0 > 0$ К исчезает. Повышение Δn_0 и $\Delta \gamma$ при $L_{\perp} >$ $L_{\perp e}$ индуцирует смену знака коэффициента B_1 и появление точки $T_{\rm e}$. Дальнейший рост Δn_0 снижает $T_{\rm e}$ и повышает B_{1e} (34), что приводит к исчезновению точки $T_{\rm e} > 0$ К при $B_{1\rm e} > B_1$.

Выводы

Для одноосных каламитных ЖК с высокими значениями Δn характерны следующие особенности изменения функций $n_i(t)$, $\langle n(t) \rangle$ и $\overline{n}(t)$:

- Соотношения B₁ > b₁ > 0 в аппроксимационных формулах (18), (23) вместо соотношений b₁ < B₁ < 0 для ЖК с малыми и средними значениями ∆n.
- Возможность появления точки t_n экстремума на зависимости ⟨n⟩(t) с ⟨n⟩'(t_n) = 0 при переходе от ЖК со средними значениями Δn к ЖК с высокими Δn.
- Возможность появления точки t_{ε} максимума на зависимостях $\overline{n}(t)$, $\overline{\varepsilon}(t)$ для ЖК с достаточно низкими значениями $B_1 > b_1 > 0$.
- Наличие точки $T_e > 0$ К максимума на зависимости $n_{\parallel}(T)$ при условиях $B_1 > B_{1e}$ и $L_{\perp}(T_e) > L_{\perp e}(n_j)$ вместо точки $T_o > 0$ К минимума на зависимости $n_{\perp}(T)$ при условии $|B_1| > |B_{1o}|$ для ЖК с малыми и средними значениями Δn . Для ЖК с высокими значениями Δn здесь впервые определены экспериментальные величины $L_{\perp}(T)$ и подтверждено требование $L_{\perp}(T_e) > L_{\perp e}(n_j)$.
- Величины T_{NI} T_e для ЖК с точкой T_e значительно больше значений T_{NI} T_o для ЖК с точкой T_o.

Для ЖК с высокими (низкими) значениями Δn характерны следующие закономерности:

- Снижение Δn₀ и разности T_{NI} T_e (T_{NI} T_o) с ростом номера гомолога в пределах гомологического ряда.
- Повышение $T_{\rm e}(T_{\rm o})$ с ростом длины световой волны λ и снижением Δn_0 для фиксированного ЖК.

Все это расширяет наши представления об оптических свойствах ЖК, углубляет понимание их микроскопической природы и открывает новые возможности оптимизации технологических параметров ЖК-материалов.

Список литературы / References

- Maier W. Optische und magneto-optische Eigenschaften von kristallinen Flüssigkeiten. *Landolt-Börnstein*. 6th ed. Berlin: Springer, 1962, 2 (8), 553–560.
 DOI: 10.1007/978-3-662-43289-1.
- Pelzl G., Sackmann H. Birefringence and Polymorphism of Liquid Crystals. *Symp. Faraday Soc.*, 1971, 5 (1), 68–88. DOI: 10.1039/SF9710500068.
- Pelzl G., Hauser A. Birefringence and Phase Transitions in Liquid Crystals. *Phase Trans.*, 1991, **37** (1) 33–62. DOI: 10.1080/01411599108203447.
- 4. Mauguin Ch. Measurement of the two refraction indices of a liquid crystal in its whole range of existence. *Bull. Soc. Chim. Belg.*, 1927, **36** (2), 172–182.
- 5. Palffy-Muhoray P., Balzarini D.A. Refractive index measurements and order parameter determination of the

liquid crystal *p*-ethoxybenzylidene-*p*-*n*-butylaniline. *Canad. J. Phys.*, 1981, **59** (4), 515–520. **DOI:** 10.1139/p81-066.

- Brugioni S., Faetti S., Meucci R. Mid-infrared indices of the nematic mixture E7. *Liq. Cryst.*, 2003, **30** (8), 927–930. **DOI:** 10.1080/0267829031000136057.
- Li J., Gauza S., Wu S.-T. Temperature effects on liquid crystal refractive indices. J. Appl. Phys., 2004, 96 (1), 19–24. DOI: 10.1063/1.1757034.
- Li J., Gauza S., Wu S.-T. High temperature-gradient refractive index liquid crystals. *Opt. Expr.*, 2004, **12** (9), 2002–2010. **DOI:** 10.1364/OPEX.12.002002.
- Dolphin D., Muljiani, Cheng J., Meyer R.B. Low temperature chiral nematic liquid crystals derived from β-methylbutylaniline. *J. Chem. Phys.*, 1973, 58 (2), 413–419. DOI: 10.1063/1.1679220.
- Jen S., Clark N.A., Pershan P.S, Priestley E.B. Polarized Raman scattering studies of orientational order in uniaxial liquid crystalline phases. *J. Chem. Phys.*, 1977, 66 (10), 4635–4661.
 DOI: 10.1063/1.433720.
- Madhusudana N.V., Moodithaya K.P.L., Suresh K.A. Effect of skew cybotactic structure on the optical properties of a nematogen with a lateral cyano substituent. *Mol. Crys. Liq. Cryst.*, 1983, **99** (1/2), 239–247. **DOI:** 10.1080/00268948308072045.
- Аверьянов Е. М., Муратов В. М., Румянцев В. Г. Возмущения электронной структуры примесных молекул, индуцированные ориентационной упорядоченностью в нематическом жидком кристалле // ЖЭТФ. 1985 Т. 88, № 3. С. 810–821. [Aver'yanov E.M., Muratov V.M., Rumyantsev V.G. Perturbations caused in the electronic structure of impurity molecules by the orientational order in a nematic liquid crystals. Sov. Phys. JETP, 1985, 61 (3), 476–483].
- Аверьянов Е. М. Температурное поведение показателей преломления одноосных нематиков и холестериков // Жидк. крист. и их практич. использ. 2007. Вып. 2. С. 63–73. [Aver'yanov E.M. Tempe-rature behaviour of refractive indices of uniaxial nematics and cholesterics. Liq. Cryst. and their Appl., 2007, (2), 63–73 (in Russ.)].
- Аверьянов Е. М. Влияние дисперсии показателей преломления на особенности их температурного поведения в одноосных жидких кристаллах // Жидк. крист. и их практич. использ. 2007. Вып. 3. С. 5–13. [Aver'yanov E.M. Influence of dispersion of the refractive indices on the features of their temperature behavior in uniaxial liquid crystals. Liq. Cryst. and their Appl., 2007, (3), 5–13 (in Russ.)].
- Аверьянов Е. М. Температурное поведение показателей преломления смектиков А // Жидк. крист. и их практич. использ. 2007. Вып. 4. С. 5–15. [Aver'yanov E.M. Temperature behaviour of refractive indices of smectics A. Liq. Cryst. and their Appl., 2007, (4), 5–15 (in Russ.)].

- Dabrowski R., Kula P., Herman J. High birefringence liquid crystals. *Crystals*, 2013, 3 (3), 443–482.
 DOI: 10.3390/cryst3030443.
- Kang S., Nakajima S., Arakawa Y., Konishi G.-I., Watanabe J. Large extraordinary refractive index in highly birefringent nematic liquid crystals of dinaphthyldiacetylene-based materials. *J. Mater. Chem. C*, 2013, 1 (27), 4222–4226. DOI: 10.1039/c3tc30640b.
- Arakawa Y., Kang S., Nakajima S., Sakajiri K., Cho Y., Kawauchi S., Watanabe J., Konishi G.-I. Diphenyltriacetylenes: novel nematic liquid crystal materials and analysis of their nematic phase-transition and birefringence behaviours. *J. Mater. Chem. C*, 2013, 1 (48), 8094–8102. DOI: 10.1039/c3tc31658k.
- Arakawa Y., Kang S., Watanabe J., Konishi G.-I. Synthesis, Phase-transition Behaviors, and Birefringence Properties of Fluorinated Diphenyl-Diacetylene Derivatives. *Chem. Lett.*, 2014, **43** (12), 1858–1860. DOI: 10.1246/cl.140779.
- 20. Arakawa Y., Tsuji H. The effect of fluorine substitutions on the refractive index properties for π -conjugated calamitic nematic materials. *Phase Trans.*, 2017, **90** (6), 549–556. **DOI**: 10.1080/01411594.2016.1233555.
- Arakawa Y., Kang S., Tsuji H., Watanabe J., Konishi G.-I. Development of novel bistolane-based liquid crystalline molecules with an alkylsulfanyl group for highly birefringent materials. *RSC Advances*, 2016, 6 (20), 16568–16574. DOI: 10.1039/c5ra25122b.
- Arakawa Y., Kang S., Tsuji H., Watanabe J., Konishi G.-I. The design of liquid crystalline bistolane-based materials with extremely high birefringence. *RSC Advances*, 2016, 6 (95), 92845–92851.
 DOI: 10.1039/c6ra14093a.
- Аверьянов Е. М. Эффекты локального поля в оптике жидких кристаллов. Новосибирск: Наука, 1999. 552 с. [Aver'yanov E.M. Effects of local field in optics of liquid crystals. Novosibirsk : Nauka, 1999, 552 p. (in Russ.). DOI: 10.13140/RG.2.1.4720.6882].
- 24. De Gennes P.G., Prost J. The physics of liquid crystals. Oxford: Clarendon Press, 1993, 597 p.
- 25. Аверьянов Е. М. Анизотропия локального поля световой волны в квазидвумерных объектах «мягкой материи» // ЖЭТФ. 2010. Т. 137, № 4. С. 705–720. [Aver'yanov E.M. Local-field anisotropy of a light wave in quasi-two-dimensional soft-matter objects. *JETP*, 2010, **110** (4), 622–636. **DOI:** 10.1134/S1063776110040102].
- 26. Аверьянов Е. М. Анизотропия локального поля в анизотропных пленках сопряженных полимеров // ФТТ. 2011. Т. 53, № 9. С. 1832–1840. [Aver'yanov E.M. Anisotropy of the local field in anisotropic films of conjugated polymers. *Phys. Sol. St.*, 2011, **53** (9), 1933– 1942. **DOI:** 10.1134/S1063783411090046].
- Аверьянов Е. М. Изменение поляризуемости молекул MBBA при переходе нематик – изотропная жидкость и физические следствия // ΦTT. 2013.

T. 55, \mathbb{N} 10. C. 2020–2025. [Aver'yanov E.M. Change in the polarizability of MBBA molecules during the nematic – isotropic liquid transition and physical concequences // *Phys. Sol. St.*, 2013, **55** (10), 2136– 2141. **DOI:** 10.1134/S106378341310003X].

- Аверьянов Е. М. Изменение поляризуемости молекул при фазовых переходах изотропная жидкость нематик смектик А кристалл В в жидком кристалле 4O.8 // Жидк. крист. и их практич. использ. 2017. Т. 17, № 2. С. 6–13. [Aver'yanov E.M. Change of polarizability of molecules at the isotropic liquid nematic smectic A crystal B phase transitions of the liquid crystal 4O.8. Liq. Cryst. and their Appl., 2017, 17 (2), 6–13 (in Russ.). DOI: 10.18083/LCAppl.2017.2.6].
- Аверьянов Е. М. Ориентационный порядок и поляризуемость молекул в нематическом жидком кристалле // ФТТ. 2014. Т. 56, № 5. С. 1019–1023. [Aver'yanov E.M. Orientational order and polarizabi-

lity of molecules in a nematic liquid crystal. *Phys. Sol. St.*, 2014, **56** (5), 1058–1063. **DOI:** 10.1134/S1063783414050035].

Аверьянов Е. М. Изменение средней поляризуемости молекул и анизотропии тензора Лорентца при фазовом переходе нематик – смектик А и в гомологическом ряду // Журн. физ. хим. 2012. Т. 86, № 5. С. 810–818. [Aver'yanov E.M. Mean polarizability of molecules and anisotropy of the Lorentz tensor upon a nematic – smectic A phase transition: their behavior in a homologous series. Russ. J. Phys. Chem. A, 2012, 86 (5), 720–728. DOI: 10.1134/S0036024412050044].

Поступила в редакцию 6.04.2018 г. Received 6 April 2018