УДК 547.583.66

В. В. Быкова, Г. А. Ананьева, Н. В. Усольцева

ХИРАЛЬНЫЕ ЖИДКИЕ КРИСТАЛЛЫ НА ОСНОВЕ ОПТИЧЕСКИ АКТИВНОГО ИЗОАМИЛОВОГО СПИРТА

CHIRAL LIQUID CRYSTALS BASED ON OPTICAL ACTIVE ISOAMIL ALCOHOL

Ивановский государственный университет, НИИ Наноматериалов 153025 Иваново, ул. Ермака, 39. E-mail: nv usoltseva@mail.ru

С целью изучения влияния строения каламитных соединений на их мезоморфные свойства осуществлен синтез и изучены текстурные характеристики пяти производных изоамилового спирта. Установлено, что из пяти соединений только два (алкилзамещенные) проявляют хиральную нематическую фазу. Алкоксизамещенные и производные со сложноэфирной связью формируют нематическую фазу без признаков хиральности.

Ключевые слова: синтез, хиральные жидкие кристаллы, мезоморфизм, оптически активный изоамиловый спирт.

To study the influence of the calamitic compounds structure on their mesomorphic properties, the synthesis and study of the texture characteristics of 5 isoamil alcohol derivatives were carried out. Only two (alkylsubstituted) from 5 compounds possess chiral nematic phase. The alkoxysubstituted and the ester derivatives from nematic phase without chirality features.

Key words: synthesis, chiral liquid crystals, mesomorphism, optical active isoamil alcohol.

Известна способность образовывать холестерическую мезофазу органическими соединениями, содержащими по крайней мере один оптически активный углеродный атом, обуславливающий их хиральность (оптическую активность) [1 – 4]. К хиральным жидким кристаллам (ХЖК) относятся два типа соединений – производные оптически активных стероидов и нестероидные соединения, принадлежащие к тем же классам химических соединений, что и нематические жидкие кристаллы, но обладающие хиральностью - так называемые хиральные нематогены. Большой интерес к этим соединениям объясняется широким использованием хиральных нематогенов в науке и технике. Одним из первых хиральных нематогенов был синтезирован и достаточно широко исследован оптически активный 2-метилобутиловый эфир 4-(4'-цианбензилиден)аминокоричной кислоты. Позднее были описаны различные алкил-, алкокси-, ацилоксизамещенные азометины, производные коричной кислоты, азо- и азоксисоединения, ди- и тетрафенилы, сложные эфиры – производные *п*-оксибензойной, терефталевой или 1,4циклогексанкарбоновой кислот [5-8]. За счет изменения формы молекулы и хиральности можно добиться модификации надмолекулярной упаковки в жидкокристаллических фазах. Хиральность является главным направлением, ведущим к повышению сложности и расширению функциональности ЖК-фаз.

-

[©] Быкова В. В., Ананьева Г. А., Усольцева Н. В., 2011

Целью данной работы является синтез каламитных мезогенов, содержащих фрагмент оптически активного изоамилового спирта и изучение их мезоморфных свойств методом поляризационной микроскопии (рис. 1).

 $Puc.\ I.\$ Структурная формула соединений I-V

Соединения I - V получали по схеме, представленной на рис. 2.

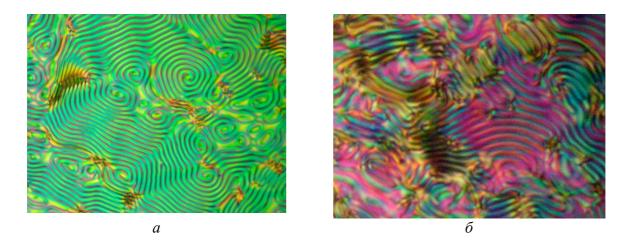
$$3C_{n}H_{2n+1} - A - COOH \xrightarrow{SOCl_{2}} 3C_{n}H_{2n+1} - A - COOI \xrightarrow{HO} COOH$$

$$C_{n}H_{2n+1} - A - COO - COOH \xrightarrow{SOCl_{2}} C_{n}H_{2n+1} - A - COO - COOI \xrightarrow{SOCl_{2}} C_{n}H_{2n+1} - A - COO - COOI \xrightarrow{C} COOI$$

 $Puc.\ 2.\$ Схема синтеза соединений I-V

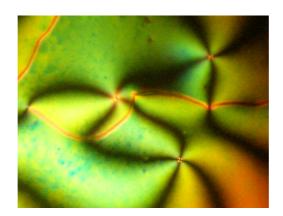
Экспериментальная часть

В ходе эксперимента отрабатывались условия синтеза, обеспечивающие повышение выхода целевых продуктов. Целевые продукты представляли собой порошкообразные вещества. Индивидуальность и чистота полученных соединений контролировалась данными элементного анализа, тонкослойной хроматографии на пластинах Silufol UV-245 (элюентом служил хлористый метилен) и ИК-спектроскопии. ИК-спектры снимались в области 400 – 4000 см⁻¹ на приборе Specord UV-80 в таблетках с КВг [10, 11]. Содержание углерода и водорода совпадали с теоретическими данными. Определение температур плавления исходных веществ и температур фазовых переходов, полученных соединений проводили с помощью метода поляризационной микроскопии с использованием микроскопа Leitz LaborLux 12 Pol, снабженного нагревательным столиком Mettler FP-82 с программным блоком.


Сложные эфиры I - V получали по реакции этерификации, прибавляя к охлажденному до 5 - 10 °C раствору 1,103 моль оптически активного изоамилового спирта в 1,234 моль пиридина при перемешивании небольшими порциями 0,066 моль хлорангидрида соответствующей кислоты (рис. 2). На другой день реакционную массу нагревали на водяной бане в течение 2 - 3 часов. После нагревания раствор охлаждали и выливали в воду, подкисленную соляной кислотой (4:1). Выпавший осадок отфильтровывали, промывали водой до нейтральной реакции, высушивали на воздухе, очищали методом колончатой хроматографии и перекристаллизовывали из абсолютного спирта. Выход: 29,8 %. Индивидуальность контролировалась методом тонкослойной хроматографии, ИК-спектроскопии, элементного анализа.

Исследование мезоморфных свойств методом оптической поляризационной микроскопии показало, что все синтезированные соединения $(\mathbf{I} - \mathbf{V})$ обладают термотропным мезоморфизмом (см. табл.). Тем не менее, проявление хирального мезоморфизма значительно зависит от особенности строения молекул-мезогенов.

№ соединения	Термотропный мезоморфизм
I	Cr • 141,8 °C N* • 239,5 °C N • 274,3 °C Iso
II	Cr • 121,9 °C N* • 223,6 °C Iso
III	Cr • 133,6 °C N • 223,1 °C Iso
IV	Ст • 135,4 °C N • (существует до 300 °C – предел наблюдения микроскопа)
V	Cr • 88,3 °C N • 126,5 °C Iso


Температура фазовых переходов соединений I – V

Так, соединения I и II образуют хиральную нематическую фазу (рис. 3).

Рис. 3. Текстура отпечатков пальцев хиральных нематических мезофаз (процесс нагрева): a — соединение **I**, N^* (T = 177,1 °C); δ — соединение **II**, N^* (T = 154,7 °C); николи скрещены, $\times 250$

Замена алкильного заместителя (соединение **II**) в пара-положении на алкоксизаместитель с той же протяженностью углеводородного фрагмента (соединение **III**), равно как и формирование сложноэфирной связи с замещением в пара- и мета-положениях с той же протяженностью углеводородного фрагмента (соединение **V**), приводит к исчезновению хиральности мезофазы (рис. 4). Укорочение алкоксизаместителя в параположении (соединение **IV**) также приводит к исчезновению хиральности в мезофазе, но значительно повышает её термостабильность.

Рис. 4 . Шлирен текстура термотропной мезофазы соединения **III** (процесс нагрева) T = 226,7 °C, николи скрещены, $\times 250$

Таким образом, исследование соединений I-V показало, что они энантиотропно проявляют нематический тип мезоморфизма с широким интервалом стабильности мезофазы, значительно более широким по сравнению с их нехиральными предшественниками [9], однако хиральностью обладают только алкилзамещенные соединения I и II, алкоксипроизводные (III и IV), а также соединения со сложноэфирной связью (V), хиральной нематической фазы не проявляют.

Список литературы

- 1. *Yuichiro Haramoto, Hiroyoshi Kamogawa* // Bull. Chem. Soc. Jpn. 1990. Vol. 63. P. 156 158.
- 2. Fred Y. fan, John C. Mastrangelo, Dimitris Katsis, Shaw H. Chen // Liq. Cryst. 2000. Vol. 27. № 9. P. 1239 1248.
- 3. *Jhan-She Hu, Bao-Yan Zhang, Ke Sun and Qian-Yue Li* // Liq. Cryst. 2003. Vol. 30. № 11. P. 1267 1275.
- 4. *Miroslav Kaspar, Alexej Bubnov, Vera Hamplova. Slavomir Pirkl and Milada Glogarova* // Liq. Cryst. 2004. Vol. 31. № 6. P. 821 830.
- 5. *Титов В. В., Павлюченко А. И.* // Химия гетероциклических соединений. 1980. № 1. С. 3 18.
- 6. Усольцева В. А. // ЖВХО им. Д. И. Менделеева. 1983. Т. 28. № 2. С. 2 11.
- 7. *Kaŝpar M.*, *Bubnov A.*, *Hamplova V. et all.* // Liq. Cryst. 2004. Vol. 31. № 6. P. 821 830.
- 8. *Haramoto J., Kamogava H.* // The Chemical Society of Japan. 1990. Vol. 63. P. 156 158.
- 9. *Быкова В. В., Жарова М. А., Усольцева Н. В. //* Жидкие кристаллы и их практическое использование. 2005. Вып. 1/2. С. 74 80.

Поступила в редакцию 27.12. 2010 г.