УДК 532.783

Е. М. Аверьянов

ИЗМЕНЕНИЕ ПЛОТНОСТИ МОЛЕКУЛЯРНОЙ ПОЛЯРИЗУЕМОСТИ И ХАРАКТЕР ФАЗОВОГО ПЕРЕХОДА СМЕКТИК *А* – КРИСТАЛЛ *В* В ЖИДКОМ КРИСТАЛЛЕ 20.2С

Институт физики им. Л. В. Киренского, ФИЦ КНЦ СО РАН, Академгородок, 50, 660036 Красноярск, Россия. E-mail: aver@iph.krasn.ru

Компоненты плотности молекулярной поляризуемости $(G_j = \gamma_j/v)$ для световых волн, поляризованных вдоль (j = ||) и поперек $(j = \bot)$ оптической оси одноосного жидкого кристалла, связаны с компонентами поляризуемости (γ_j) и объемом (v), приходящимся на молекулу в среде. В данной работе определены зависимости величин G_r (компонент G_j , среднего значения G_m и анизотропии G_a) от температуры и длины световой волны (λ) в смектической A и кристаллической B фазах жидкого кристалла этил-п-(4-этоксибензилиденамино)циннамата. Для обеих фаз получены температурные зависимости эффективных длин волн λ_r электронных переходов, определяющих дисперсию $G_r(\lambda)$ в видимой области. Установлена связь величин λ_r с характеристиками реальных электронных переходов (длинами волн, силами осцилляторов и поляризацией) и параметром ориентационного порядка молекул (S). С использованием значений $G_r(T)$ и $\lambda_r(T)$ показано, что фазовый переход «смектик A – кристалл B» сопровождается слабым изменением S, снижением анизотропии поляризуемости молекул и изменением поляризации электронных переходов.

Ключевые слова: поляризуемость мезогенных молекул, фазовые переходы в жидких кристаллах, межмолекулярные взаимодействия.

DOI: 10.18083/LCAppl.2017.3.50

E. M. Aver'yanov

CHANGE OF MOLECULAR POLARIZABILITY DENSITY AND NATURE OF THE SMECTIC A – CRYSTAL B PHASE TRANSITION OF LIQUID CRYSTAL 20.2C

Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 50 Akademgorodok, Krasnoyarsk, 660036, Russia. E-mail: aver@iph.krasn.ru

Components of the molecular polarizability density $(G_j = \gamma_j/v)$ for light waves polarized along (j = ||) and across $(j = \bot)$ the optical axis of uniaxial liquid crystal are related to the components of polarizability (γ_j) and the volume per molecule in the medium (v). In this work, the dependences of G_r (components G_j , mean value G_m and anisotropy G_a) on temperature and light wavelength (λ) were determined for smectic A and crystal B phases of liquid crystalline ethyl-p-(4-etoxybenzylideneamino)cinnamate. The temperature dependences of the effective wavelengths (λ_r) for electronic transitions which are responsible for dispersion $G_r(\lambda)$ in the visible range were obtained in both phases. The relation between the values of λ_r and the characteristics of real electronic transitions (wavelengths, oscillator strengths and polarizations) and the orientational order parameter (S) of molecules was established. Using the values G_r and λ_r it was revealed that the smectic A – crystal B phase transition is accompanied by very small change of S, decrease in the anisotropy of molecular polarizability and change of the polarization of electronic transitions.

Key words: polarizability of mesogenic molecules, phase transitions in liquid crystals, intermolecular interactions.

[©] Аверьянов Е. М., 2017

Введение

Жидкие кристаллы (ЖК) с большим разнообразием фаз [1] являются модельными объектами для исследования взаимосвязи свойств молекул со структурными и функциональными особенностями самоорганизующихся молекулярных ансамблей. Для адекватного описания этих объектов необходимо расширение спектра параметров, характеризующих свойства ЖК. Важной характеристикой молекул и образуемой ими фазы является тензор плотности поляризуемости $G = N\gamma = \gamma/v$, где $\gamma - v$ усредненный по ансамблю тензор молекулярной поляризуемости в системе главных осей эллипсоида рефракции ЖК, N – число молекул в единице объема, v – объем, приходящийся на молекулу в ЖК. Поскольку тензор G был введен в научный обиход недавно [2, 3], отметим его основные свойства и функции для одноосных ЖК. Компоненты $G_i = N\gamma_i$ для направлений вдоль (j = ||) и нормально $(j = \bot)$ оптической оси *n* связаны с компонентами ε_i тензора диэлектрической проницаемости ЖК выражением [4]

$$G_j = (\varepsilon_j - 1)/(4\pi f_j). \tag{1}$$

Здесь $f_j = 1+L_j(\varepsilon_j - 1)$ – компоненты тензора локального поля, L_j – компоненты тензора Лорентца. В области прозрачности $\varepsilon_j = n_j^2$, n_j – показатели преломления ЖК. Определение компонент G_j не требует данных по плотности $\rho \propto N$, необходимых для определения величин γ_j . При определении компонент $L_j(T)$ из экспериментальных зависимостей $n_j(T,\lambda)$ от длины световой волны λ в рамках метода [5] для получения величин $G_j(T,\lambda)$.

Тензор G определяет межмолекулярные взаимодействия, упорядоченность молекул и устойчивость ЖК-фаз. Среднее значение G_m = $(G_{\parallel} + 2G_{\perp})/3$ и анизотропия $G_a = G_{\parallel} - G_{\perp}$ характеризуют энергии изотропных $u_m \propto G_m^2$ и анизотропных $u_a \propto G_a^2$ дисперсионных межмолекулярных взаимодействий в ЖК. В теории Майера – Заупе [1, 6] анизотропная часть $U \propto u_a$ внутренней энергии нематика определяется величиной $G_a = (\gamma_{\parallel} - \gamma_{\perp})/v = \gamma_a S/v$. Следствием этого является зависимость функции $f(\theta)$ œ $\exp\{[u(T)/(k_{\rm B}T)]P_2(\cos\theta)S\}$ ориентационного распределения молекул и температуры $T_{\rm NI} \propto [u(T_{\rm NI})]^2$ перехода нематик – изотропная жидкость (N-I) от величины $u \propto (\gamma_a/\nu)^2$. Здесь θ – угол между продольной осью молекулы l и n, $P_2(\cos\theta)$ – полином Лежандра, $S = \langle P_2 \rangle$ – параметр ориентационного порядка молекул, $\gamma_a = (\gamma_l - \gamma_l)$ – анизотропия молекулярной поляризуемости, $\gamma_{l,t}$ – продольная и поперечная компоненты поляризуемости.

Тензор G важен и для смектических ЖК, молекулы которых имеют химические свойства, неоднородные по молекулярному объему. При самоорганизации таких молекул в отсутствие комплексообразования и водородных связей образование иерархически организованных структур зависит от распределения поляризуемости по объему молекулы [7]. Различие плотности ароматического поляризуемости остова И алифатических концевых цепей мезогенных молекул способствует микрорасслоению нематической фазы и образованию смектических фаз с сегрегацией молекулярных остовов и цепей -«подобное растворяется в подобном». Зависимость $G_m(x)$ от длины x цепей для гомологов одного ряда дает информацию о значениях G_{mc} и G_{mu} для остова и метиленовых фрагментов цепей [2]. Соотношение величин G_{mc} и $G_{m\mu}$ определяет смектогенные свойства молекулы, а соотношение величин G_{mc} в соседних смектических фазах позволяет судить о степени сегрегации остовов и цепей в этих фазах [3]. Исследование зависимостей $G_r(T,\lambda)$ (r = j, m, a) особенно актуально в случае высокоупорядоченных и кристаллических смектиков [1], для которых измерение плотности сопряжено с трудностями.

Если зависимость $G_r(\lambda)$ в области прозрачности ЖК определяется совокупностью близких молекулярных переходов, она с высокой точностью аппроксимируются функцией [3]

$$G_r(T,\lambda) = G_{rb}(T) + A(T)\lambda^2 / [\lambda^2 - \lambda_r^2(T)].$$
(2)

Величины λ_r чувствительны к изменению температуры и фазового состояния ЖК [3], однако связь λ_r со спектральными свойствами и структурной упорядоченностью молекул пока не выяснена. Все это определяет интерес к изучению зависимостей $G_r(T,\lambda)$ для получения новой информации о молекулярной природе фазовых переходов в ЖК.

Данная работа посвящена исследованию зависимостей $G_r(T,\lambda)$ и $\lambda_r(T)$ в смектической-*A* (*SmA*) и кристаллической-*B* (B_{cr}) фазах гомолога 20.2С из указанного ниже ряда *n*O.*m*C [3].

$$H_{2n+1}C_nO-\langle Ph \rangle_1-CH=N-\langle Ph \rangle_2-CH=CH-COO-C_mH_{2m+1}$$

Здесь (Ph)_{1,2} – фенильные кольца. В этом известном ЖК [8–11] с температурами T_{NI} = 159 °С, T_{NA} = 156,5 °С и T_{AB} = 118,5 °С фазовых переходов N–I,

N–*SmA* и *SmA*–*B_{cr}* интересно изменение *S* и молекулярных свойств при переходе B_{cr} –*SmA*. Он представляет собой квазидвумерное плавление кристаллических молекулярных слоев и характеризуется энтальпией $\Delta H(B-A) = 2,1$ кДж/моль, которая меньше энтальпии $\Delta H(A-N) = 5,1$ кДж/моль [8] сильного перехода первого рода *SmA*–*N*, связанного с плавлением одномерной волны плотности смектических слоев.

Результаты и обсуждение

Зависимости $G_r(T)$ и S(T). Для смектических фаз ЖК 2О.2С величины $n_j(T,\lambda)$, измеренные на рефрактометре при значениях $\lambda_1 = 0,5461$ мкм, $\lambda_2 = 0,5893$ мкм и $\lambda_3 = 0,6438$ мкм, табулированы в работе [9]. Значения $L_{\perp}(T)$, полученные из этих зависимостей $n_j(\lambda)$ методом [5], приведены в работе [3]. Для смектических фаз с высокими значениями S и слабым изменением S(T), $G_r(T)$ вместо температурной шкалы удобно использовать анизотропию $\varepsilon_a(T) = \varepsilon_{\parallel} - \varepsilon_{\perp}$. Корреляционные зависимости безразмерных величин $G_r(T,\lambda_2)$, рассчитанных по формуле (1), от $\varepsilon_a(T,\lambda_2)$ представлены на рис. 1. В отличие от анизотропии G_a , ошибки величин G_{\parallel} , G_m и G_{\perp} не видны в масштабе рисунка. Обсудим характерные особенности изменения $G_r(\varepsilon_a)$.

Рис. 1. Зависимости величин $G_{\parallel}(1,l'), G_m(2,2'), G_a(3,3')$ и $G_{\perp}(4,4')$ от ε_a в фазах SmA (1–4) и $B_{cr}(1'-4')$ ЖК 20.2С при $\lambda = 0,5893$ мкм. Графики 1, 1' смещены вниз на 0,45 единиц. Линии – зависимости (3) с табличными коэффициентами

Fig. 1. Dependences of the values $G_{\parallel}(1,l')$, $G_m(2,2')$, $G_a(3,3')$ and $G_{\perp}(4,4')$ on ε_a in *SmA* (*1*–4) and $B_{cr}(1'-4')$ phases of LC 2O.2C at $\lambda = 0,5893 \ \mu\text{m}$. Plots marked by *1*, *l'* are shifted downward by 0,45. Lines are the dependences (3) with coefficients listed in the table

Таблица. Коэффициенты $G_{(0,1)r}$ зависимости (3) и коэффициенты корреляции R для смектических фаз ЖК 2О.2С при $\lambda = 0,5893$ мкм

Table. The coefficients $G_{(0,1)r}$ of the dependence (3) and correlation coefficients R for smectic phases of LC 2O.2C at $\lambda = 0.5893 \ \mu m$

r	Phase	G_{0r}	G_{1r}	R
	SmA	0,5016	0,8278	0,9992
	B _{cr}	0,4151	0,8965	0,9998
т	SmA	0,5602	0,2995	0,9950
	B _{cr}	0,4389	0,3968	0,9998
а	SmA	-0,0880	0,7925	0,9999
	B _{cr}	-0,0357	0,7496	0,9997
\perp	SmA	0,5895	0,0353	0,7543
	B _{cr}	0,4508	0,1469	0,9983

В обеих смектических фазах зависимости $G_r(\varepsilon_a)$ хорошо аппроксимируются функцией

$$10G_r = G_{0r} + G_{1r}\varepsilon_a \tag{3}$$

с приведенными в таблице коэффициентами. В фазе SmA коэффициент G₁₁ мал и изменение $G_{\perp}(T)$ слабое. Величины $G_{0\perp}$ и G_{0m} , отвечающие изотропной фазе ($\varepsilon_a = 0$) и имеющие точность ≈0,0173. близки между собой. Малое отрицательное значение G_{0a} свидетельствует о слабом изменении величины $\gamma_a(T)$ в фазе SmA относительно изотропной фазы. Переход SmA-B_{cr} сопровождается заметным ростом $G_{1\parallel}$, G_{1m} и сильным ростом $G_{1\perp}$. На этом фоне снижение G_{1a} при повышении N \propto ρ соответствует замедлению роста или снижению γ_a при данном переходе.

Близость величин G_m и G_a в обеих смектических фазах показывает близость энергий изотропного и анизотропного дисперсионных межмолекулярных взаимодействий, вносящих вклад в термодинамическую устойчивость этих фаз. Зависимости $G_m(\varepsilon_a)$ и $G_a(\varepsilon_a)$, экстраполированные из фазы SmA в низкотемпературную область, пересекаются в виртуальной точке $\varepsilon_a^* =$ $[(G_{0m} - G_{0a})/(G_{1a} - G_{1m})]_A = 1,3148, для которой <math>S^*(\gamma_a/\gamma_m)^* = 1$ и $(\gamma_a/\gamma_m)^* = 1/S^*$. В фазе B_{cr} зависимости $G_m(\varepsilon_a)$ и $G_a(\varepsilon_a)$ пересекаются в реальной точке $\varepsilon_a^{**} = [(G_{0m} - G_{0a})/(G_{1a} - G_{1m})]_B = 1,3452, для которой <math>(\gamma_a/\gamma_m)^{**} = 1/S^{**}$. Поскольку $\varepsilon_a^{**} < \varepsilon_a^{**}$ и $S^* < S^{**} < 1$, то $(\gamma_a/\gamma_m)^* > (\gamma_a/\gamma_m)^{**} > 1$ и отношение γ_a/γ_m снижается при переходе $SmA-B_{cr}$.

Для оценки изменения *S* в обсуждаемых фазах используем функцию $\kappa(T) = G_a/G_m = S\gamma_a/\gamma_m$, не зависящую явно от плотности. Возможная

зависимость $\gamma_r(T) = \gamma_{0r} + \delta\gamma_r(T)$ не может заметно влиять на определяемые значения S(T) в силу неравенства $\gamma_{0r} >> \delta\gamma_r(T)$ [7, 12]. В фазе *SmA* зависимость $\kappa(T)$ при $\lambda = \lambda_2$ аппроксимируется функцией $\kappa_A(T) = \kappa_{A0}(1 - T/T_1)^{\beta}$ с параметрами $\kappa_{A0} =$ 1,0717 ± 0,0083, $\beta = 0,0605 \pm 0,0053$, $T_1 = 453,66 \pm$ 3,59 К при коэффициенте корреляции R = 0,9999. Полагая S(T = 0) = 1, получаем для фазы *SmA* зависимость

$$S_A(T) = (1 - T/T_1)^{\beta}$$
(4)

и $(\gamma_a/\gamma_m)_{T=0} = \kappa_{A0}$. Для фазы B_{cr} принимаем $S_B(T) =$ $\kappa_B(T)/\kappa_{A0}$. Интервалам изменения $G_r(\varepsilon_a)$ на рис. 1 отвечают интервалы $S_A = 0,8456 - 0,8859$ и $S_B =$ 0,8943 - 0,9207. Высокие значения S_A коррелируют с сильным переходом *N-SmA* первого рода [8] и большой шириной (38 °C) интервала смектической фазы. Они близки к значениям $S_4 = 0.795 - 0.885$ для молекул этил-*p*-(4-этоксибензилиденамино-)αметилциннамата (ЕЕВМ [13]) - аналогов 20.2С с латеральным заместителем СН₃ и слабым переходом N-SmA. Из-за малой длины концевых цепей молекул 20.2С, ЕЕВМ тепловая подвижность и конформационно-разупорядоченное состояние цепей [3, 11] не оказывают заметного ориентационно-разупорядочивающего влияния на ароматические остовы молекул, которые вносят основной вклад в поляризуемость И дисперсионные межмолекулярные взаимодействия [4, 7]. Значения S_B для 20.2С типичны для этой фазы в других [12, 14–17]. производных бензилиденанилина Зависимость $S_B(T)$ хорошо описывается функцией $S_B(\varepsilon_a) = a_0 + a_1 \varepsilon_a$ с коэффициентами $a_0 = 0,4507$, $a_1 = 0,3590$ и R = 0,9984, так что $S^* = 0,9227$ и $S^{**} =$ 0,9336. Отсюда следуют значения $(\gamma_a/\gamma_m)^* = 1,0838$ и $(\gamma_a/\gamma_m)^{**} = 1,0711$, которые удовлетворяют установленным для них выше неравенствам, не зависящим от метода определения величин S^*, S^{**} .

Характер перехода $SmA-B_{cr}$. При слабых зависимостях $\varepsilon_a(T)$ в смектических фазах этого ЖК узкие интервалы изменения ε_a на рис. 1 отвечают широким интервалам $\delta T(SmA) = 32,8$ °C и $\delta T(B_{cr}) =$ 43,2 °C [9] изменения температуры. Минимальное значение $\varepsilon_a = 1,2372$ в фазе B_{cr} при температуре $T_- = T_{AB} - 0,3^\circ$ и максимальное значение $\varepsilon_a = 1,2205$ в фазе SmA при температуре $T_+ = T_{AB} + 0,7^\circ$ несущественно отличаются от их значений в точке T = T_{AB} . Малые изменения $\delta\varepsilon_a = \varepsilon_a(T_-) - \varepsilon_a(T_+)$ и $\delta G_r =$ $G_r(T_-) - G_r(T_+)$ на рис. 1 выше реальных изменений этих величин в точке $T = T_{AB}$. Переход $SmA-B_{cr}$ первого рода проявляется в виде изломов на зависимостях (3) в точке $\varepsilon_a(T_{AB})$, что характерно для переходов, близких к переходу второго рода. Величина $\delta S = S(T_-) - S(T_+) = 0,0084$ выше реального изменения $\Delta S(T_{AB})$ и отвечает слабому переходу $SmA-B_{cr}$ первого рода в 2О.2С. О том же свидетельствует рост значений $\Delta L_{\perp}(T_{AB},x) \propto \Delta S(T_{AB})$ [3] и $\Delta H(B-A)$ [18] с ростом длины x = n + m концевых цепей для гомологов nO.mC.

Интересно сравнить значения ΔS и $\Delta H(B-A)$ для ЖК 20.2С и 4-бутилоксибензилиден-4'-октиланилина (40.8). При известном росте числа скоррелированных смектических слоев фазы B_{cr} с уменьшением длины концевых цепей молекул одного гомологического ряда [19, 20] можно было бы для ЖК 20.2С с короткими цепями ожидать более сильной межслоевой корреляции в этой фазе и отличия значения $\Delta H(B-A)$ от того же для ЖК 4O.8 с более длинными концевыми цепями, слабой корреляцией только соседних слоев [19, 20] и квазидвумерным плавлением слоев при переходе B_{cr}-SmA [21, 22]. Однако для 20.2С величина $\Delta H(B-A)$ совпадает с $\Delta H(B-A) = 2,093$ кДж/моль для 40.8 [23] при отличии значения ΔS для 20.2C на порядок от значения $\Delta S(T_{AB}) = 0,107$ для 40.8 [12]. Таким образом, для ЖК с различной химической структурой молекул соотношение величин $\Delta S(T_{AB})$ не отражает соотношения значений $\Delta H(B-A)$. При псевдогексагональной упаковке молекулярных остовов в кристаллических слоях фазы B_{cr} [24] термодинамическая устойчивость этой фазы существенно зависит от двуосности формы остова в сечении, перпендикулярном продольной оси молекулы, и, соответственно, от конформации остова. Для молекул типа *n*O.*m*C с π-электронным сопряжением фрагментов остова уплощение последнего при переходе SmA-B_{cr} сопровождается изменением сопряжения его фрагментов и влиянием этого на характеристики электронных переходов, что должно проявляться в дисперсионных зависимостях (2) и значениях $\lambda_r(T)$.

Зависимости $\lambda_r(T)$. С использованием компонент $L_j(T_p)$ [3] и значений $n_j(T_p,\lambda_i)$ [9] в каждой реперной точке T_p обеих смектических фаз ЖК 20.2С были получены величины $G_j(T_p,\lambda_i)$ (1) и $G_{a,m}(T_p,\lambda_i)$ при значениях λ_{1-3} . Использование величин $G_r(T_p,\lambda_i)$ в системе трех уравнений типа (2) для трех значений λ_i дало коэффициенты $G_{rb}(T_p)$, $A(T_p)$ и $\lambda_r(T_p)$. Зависимость $\lambda_r(T_p)$ приведена на рис. 2. Ошибки величин $\lambda_r(T_p)$, обусловленные ошибками определения компонент $L_j(T_p)$ [3], не превышают

0,0004 мкм и не видны в масштабе рис. 2. Значения $\lambda_r(T_p)$ весьма чувствительны к значениям $n_i(T_p,\lambda_i)$.

Рис. 2. Температурные зависимости величин $\lambda_a(I), \lambda_{\parallel}(2), \lambda_m(3)$ и $\lambda_{\perp}(4)$ в ЖК 2О.2С. Сплошные, штриховые и штрих-пунктирные линии – линейные интерполяции величин $\lambda_{\parallel}, \lambda_m$ и λ_{\perp} , соответственно

Fig. 2. Temperature dependences of the values $\lambda_a(1)$, $\lambda_{\parallel}(2)$, $\lambda_m(3)$ and $\lambda_{\perp}(4)$ in LC 2O.2C. The solid, dashed and dashed-dotted lines are linear interpolations of the values λ_{\parallel} , λ_m and λ_{\perp} , respectively

Нерегулярность изменения $\lambda_r(T_p)$ вблизи T_{AB} в фазе B_{cr} обусловлена значениями $n_j(T_p,\lambda_i)$ [9]. Нефизические значения $\lambda_{\perp} \ge \lambda_m$ и $\lambda_a \le \lambda_{\parallel} \le \lambda_m$ при $\Delta T = T - T_{AB} = 16,5$ °C связаны с недостаточной точностью значений $n_j(\lambda_i)$ [9].

Значения λ_a , λ_{\parallel} , λ_m на рис. 2 лежат в узком интервале $0,280 < \lambda < 0,325$ мкм и обусловлены длинноволновыми электронными переходами двух сопряженных хромофорных групп молекулы 20.2C: бензилиденанилинового остова И фрагмента (Ph)2-CH=CH-COO-C2H5. Для бензилиденанилина И его производных с терминальными заместителями длинноволновые электронные переходы типа $\pi - \pi^*$ и $n - \pi^*$ с максимумами полос поглощения $\lambda_{\pi\pi} = 0.325$ мкм и $\lambda_{n\pi} = 0,285$ мкм [25, 26] поляризованы вдоль связи N–⟨Ph⟩₂. Силы осцилляторов *F*_{лл} и *F*_{nπ} этих переходов зависят от степени сопряжения группы СН=N и фенильного кольца (Ph)2, которая определяется углом ф между плоскостями этих фрагментов. Для изолированных молекул бензилиденанилина и их производных справедливы зависимости $F_{\pi\pi}(\varphi) \propto \cos^2 \varphi$, $F_{n\pi}(\varphi) \propto \sin^2 \varphi$ [7,26]. С хромофорной группой (Ph)2-CH=CH-COO-C2H5 связан длинноволновый электронный переход,

максимум полосы поглощения которого близок к максимуму λ_{ππ} = 0,3067 мкм длинноволновой полосы поглощения молекулы H₃CO-(Ph)-CH=CH-СОО-СН₃ [27]. Поляризация этого перехода определяется цепью сопряжения фрагментов между донорной группой ОСН₃ и акцепторной группой СОО. Таким образом, все длинноволновые электронные переходы молекул *пО.mC* поляризованы вдоль длинной оси остова и лежат в узком спектральном интервале, что объясняет узкий интервал изменения λ_a , λ_{\parallel} , λ_m для ЖК 2О.2С. Для G_a и γ_a (G_m и γ_m) значения λ_a (λ_m) совпадают, что было подтверждено для смектической-А фазы ЖК ЕЕВМ [13] при $S_A = 0,870$ и 0,885. Величины λ_{\parallel} и λ_l для G_{\parallel} и γ_l (λ_{\perp} и λ_t для G_{\perp} и γ_t) также оказались очень близкими. Этого следует ожидать для смектических фаз 20.2С. При снижении температуры в фазе SmA (B_{cr}) и неизменном λ_m как сами значения λ_a и λ_{\parallel} , так и различия между ними и λ_m , возрастают (слабо снижаются). Аналогичное поведение $\lambda_{\parallel}(T)$ отмечалось ранее для гомологов 30.2С и 80.2С [3]. На этом фоне значительное снижение λ_{\perp} в фазе SmA показывает быстрое снижение вкладов длинноволновых электронных переходов в дисперсию компонент $G_{\perp}(\lambda)$, $\gamma_t(\lambda)$ с ростом S. В окрестности T_{AB} в обеих фазах значения λ_{\perp} совпадают, что согласуется со слабым переходом SmA-B_{cr}. В фазе B_{cr} неизменные эффективные значения λ_⊥ определяются совокупностью коротковолновых электронных переходов, поляризованных перпендикулярно продольной оси остова.

Теоретический анализ изменения $\lambda_r(T)$ в ЖК. В одноосном ЖК для одноосной молекулы с одной актуальной степенью свободы внутреннего вращения тензор $\gamma{\{9,\xi\}}$ зависит от совокупности периодических переменных 9 и параметров порядка ξ , характеризующих, соответственно, состояние упорядоченности молекулы и степень упорядоченности молекулярного ансамбля. Величины $9{\phi, \theta, \upsilon, \alpha}$ определяют конформацию (ф) и степень сопряжения молекулярных фрагментов, ориентацию (0) продольной оси молекулы *l* относительно *n*, положение z || n центра тяжести молекулы относительно центра смектического слоя ($\upsilon = 2\pi z/p$, *p* – период смектической структуры) и характер расположения молекул в плоскости смектического слоя (α). Совокупность параметров $\xi \{Q_2, S, \tau, |\phi|, ...\}$ характеризует конформационное состояние молекулярноного ансамбля ($Q_2 = \langle \cos^2 \varphi \rangle, ...$), ориентационную упорядоченность молекул (S, $\langle P_{n>2}(\cos\theta) \rangle$), продольный межслоевой ($\tau = \langle \cos \upsilon \rangle, ...$) и поперечный

внутрислоевой ($|\phi|$ ехр($i6\alpha$),...) позиционный порядок молекул, а также смешанные типы этих видов молекулярной упорядоченности [4]. Скобки (...) означают усреднение по ансамблю с функцией распределения $f(\vartheta)$. Зависимость $\gamma{\{\vartheta,\xi\}}$ отражает подобные зависимости для характеристик молекулярных переходов в q-ые возбужденные состояния: длин волн λ_q , сил осцилляторов F_q и поляризаций (углов β_q между ортами d_q дипольных моментов переходов и осью l). Слабыми зависимостями величин λ_q и β_q от $\{\vartheta,\xi\}$ можно пренебречь в сравнении с сильной зависимостью $F_q{\{\vartheta,\xi\}}$.

Обобщение подхода [28], развитого для нематических ЖК и подтвержденного экспериментально [12], на случай одноосных смектических фаз приводит к следующему выражению

$$\gamma_m = (D/3) \Sigma_q \Phi_q(\lambda) \langle F_q \rangle. \tag{6}$$

Здесь D = const, $\Phi_q(\lambda) = \lambda^2 \lambda_q^2 / (\lambda^2 - \lambda_q^2)$ и $\langle F_q \rangle = \langle F_q \{9,\xi\} \rangle$. Выделяя в сумме Σ_q совокупность близких длинноволновых (актуальных) электронных переходов с $q = 1 \div \mu$, определяющих дисперсию $\gamma_m(\lambda)$ в видимой области, и включая вклады других переходов в фоновое значение γ_{mb} , имеем

$$G_m(\lambda) = N\gamma_{mb} + (ND/3) \sum_{q=1}^{r} \Phi_q(\lambda) \langle F_q \rangle.$$
 (5)

Сравнение формул (2), (5) для G_m в предельных случаях $\lambda >> \lambda_{1-\mu}$ и $\lambda << \lambda_{1-\mu}$ дает представления

$$A_m = (ND/3) \sum_{q=1}^{\mu} \lambda_q^2 \langle F_q \rangle, \quad A_m = (ND/3) \lambda_m^2 \sum_{q=1}^{\mu} \langle F_q \rangle, \quad (6)$$

из которых получаем

$$\lambda_m^2 = \sum_{q=1}^{\mu} \lambda_q^2 \langle F_q \rangle / \sum_{q=1}^{\mu} \langle F_q \rangle .$$
 (7)

При близости величин $\lambda_{1-\mu}$ больший вклад в λ_m дают переходы с более высокими значениями $\langle F_q \rangle$. Компоненты γ_j даются выражением

$$\gamma_j = \gamma_m + (C_j D/3) \Sigma_q \Phi_q(\lambda) S_{\beta q} \langle P_2(\cos \theta) F_q \{ \vartheta, \xi \} \rangle.$$
(8)

Здесь $C_{\parallel} = 2$, $C_{\perp} = -1$, $S_{\beta q} = (3\cos^2\beta_q - 1)/2$, слабая зависимость $S_{\beta q} \{9,\xi\}$ не учитывается. Введем параметр $R_q = \langle P_2(\cos\theta)F_q\{9,\xi\}\rangle/[S\langle F_q\rangle]$, характеризующий корреляцию ориентационной степени свободы молекул (θ) с конформационной и позиционными (межслоевой и внутрислоевыми) степенями свободы, входящими в $\vartheta(\varphi, \upsilon, \alpha)$. Корреляция $\vartheta(\theta)$ с $P_2(\cos\theta)$ учитывает неоднородность распределения молекул в ЖК по углу θ . С использованием параметра R_q из (8) можно получить

$$\gamma_{\parallel} - \gamma_{\perp} = SD\Sigma_q \Phi_q(\lambda) S_{\beta q} R_q \langle F_q \rangle. \tag{9}$$

Разделение резонансного и фонового вкладов в обеих частях (9) дает связь

$$G_a(\lambda) = N(\gamma_{\parallel} - \gamma_{\perp})_b + NSD \sum_{q=1}^{\mu} \Phi_q(\lambda) S_{\beta q} R_q \langle F_q \rangle.$$
(10)

Сравнение формул (2), (10) для G_a в предельных случаях $\lambda >> \lambda_{1-\mu}$ и $\lambda << \lambda_{1-\mu}$ дает выражения

$$A_a = NSD \sum_{q=1}^{\mu} \lambda_q^2 S_{\beta q} R_q \langle F_q \rangle, \qquad (11)$$

$$A_a = NSD \lambda_a^2 \sum_{q=1}^{\mu} S_{\beta q} R_q \langle F_q \rangle , \qquad (12)$$

из которых следует

$$\lambda_a^2 = \sum_{q=1}^{\mu} \lambda_q^2 S_{\beta q} R_q \langle F_q \rangle / \sum_{q=1}^{\mu} S_{\beta q} R_q \langle F_q \rangle .$$
(13)

Ведем параметр

$$S_{\beta} = \sum_{q=1}^{\mu} S_{\beta q} R_q \langle F_q \rangle / \sum_{q=1}^{\mu} \langle F_q \rangle , \qquad (14)$$

который характеризует влияние межмолекулярных взаимодействий и коэффициентов R_q на поляризацию актуальных переходов, определяющих дисперсию $G_{\parallel,a,m}(\lambda)$. С учетом (14) имеем

$$\lambda_a^2 - \lambda_m^2 = \sum_{q=1}^{\mu} \lambda_q^2 \langle F_q \rangle (S_{\beta q} R_q - S_\beta) \bigg/ S_\beta \sum_{q=1}^{\mu} \langle F_q \rangle.$$
(15)

При близких $\lambda_{1-\mu}$ и $\langle F_{1-\mu} \rangle$ соотношение величин λ_a и λ_m определяется соотношением слагаемых ($S_{\beta q}R_q - S_{\beta}$). Из формул (6), (7), (12), (14) следует связь

$$A_a = 3SS_{\beta}A_m \lambda_a^2 / \lambda_m^2 . \qquad (16)$$

Ее использование при разделении резонансного и фонового вкладов в компоненты γ_j (8) и сравнение этих выражений с G_j (2) в предельных случаях $\lambda >> \lambda_{1-\mu}$ и $\lambda << \lambda_{1-\mu}$ приводит к соотношениям

$$A_j = A_m + C_j A_a/3, \tag{17}$$

$$\lambda_j^2 (1 + C_j SS_\beta) = \lambda_m^2 + C_j SS_\beta \lambda_a^2.$$
(18)

Произведение SS_{β} выражается через 3 из 4 величин λ_r следующими четырьмя способами:

$$SS_{\beta}(\lambda_{j,m}) = \frac{3\lambda_m^2 - (\lambda_{\parallel}^2 + 2\lambda_{\perp}^2)}{2(\lambda_{\parallel}^2 - \lambda_{\perp}^2)}, \qquad (19)$$

$$SS_{\beta}(\lambda_{j,a}) = \frac{\lambda_{\parallel}^2 - \lambda_{\perp}^2}{3\lambda_a^2 - (2\lambda_{\parallel}^2 + \lambda_{\perp}^2)},$$
 (20)

$$SS_{\beta}(\lambda_{\parallel,m,a}) = \frac{\lambda_{\parallel}^2 - \lambda_m^2}{2(\lambda_a^2 - \lambda_{\parallel}^2)}, \quad SS_{\beta}(\lambda_{\perp,m,a}) = \frac{\lambda_m^2 - \lambda_{\perp}^2}{\lambda_a^2 - \lambda_{\perp}^2}.$$
(21)

В этих формулах фигурируют разности величин λ_r , благодаря чему флуктуации значений $\lambda_{\parallel,a,m}$ в области $T \leq T_{AB}$ на рис. 2 при слабых изменениях их разностей не влияют на значения SS_{β} и λ_{\perp} .

Fig. 3. Dependences of the values S(1,1') and $SS_{\beta}(2,2')$ on ε_a ($\lambda = 0,5893 \mu m$) in *SmA* (1,2) and $B_{cr}(1',2')$ phases of LC 2O.2C. The solid and dashed lines are interpolations

Корреляция зависимостей S(T) и $SS_{\beta}(T)$ с зависимостью $\varepsilon_a(T,\lambda_2)$ в смектических фазах ЖК 2О.2С показана на рис. 3. Рассчитанные по (19)–(21) значения SS_{β} слабо различаются между собой вследствие малых ошибок определения λ_r . Вторая из формул (21) дает связь

$$\lambda_{\perp}^{2} = \lambda_{m}^{2} - \frac{SS_{\beta}}{1 - SS_{\beta}} (\lambda_{a}^{2} - \lambda_{m}^{2}), \qquad (22)$$

которая объясняет зависимость $\lambda_{\perp}(T)$ на рис. 2. При $\lambda_m \approx \text{const}$ в обеих смектических фазах заметный рост разности $\lambda_a - \lambda_m$ и величины SS_β в фазе SmA с понижением температуры соответствует быстрому снижению $\lambda_{\perp}(T)$. В фазе B_{cr} слабое снижение разности $\lambda_a - \lambda_m$ и слабый рост SS_β с понижением температуры компенсируют друг друга, в результате чего $\lambda_{\perp} \approx \text{const.}$

Наличие зависимостей S(T) и $SS_{\beta}(T)$ позволяет получить зависимости $S_{\beta}(T)$ и $\Lambda(T) = S_{\beta}(\lambda_a/\lambda_m)^2$, показанные на рис. 4. Для обеих смектических фаз значения S_{β} лежат в интервале 0,873–0,908. Ему отвечают значения $\beta = \arccos[(2S_{\beta} + 1)/3]^{1/2} = 17-14^{\circ}$, которые выше углов $\beta_q \approx 10^{\circ}$ в изолированных молекулах 2O.2C между моментами d_q актуальных электронных переходов и осью l молекулярного остова, проходящей через центры фенильных колец $\langle Ph \rangle_{1,2}$. Переход $SmA-B_{cr}$ проявляется в виде излома на зависимости $S_{\beta}(T)$ и смене убывающей зависимости $\beta(T)$ на возрастающую.

Этому отвечает смена возрастающих зависимостей $\lambda_{\parallel,a}(T)$ в фазе *SmA* с понижением температуры на убывающие в фазе B_{cr} (рис. 2). Из формул (2), (16) следует соотношение

$$\Lambda = \frac{\gamma_a^{(\infty)} - \gamma_{ab}}{3(\gamma_m^{(\infty)} - \gamma_{mb})}.$$
 (23)

Величина Λ характеризует отношение вкладов актуальных электронных переходов в значения $\gamma_r^{(\infty)} = \gamma_r(\lambda >> \lambda_{1-\mu})$. При общем малом различии величин Λ в обеих смектических фазах переход $SmA-B_{cr}$ проявляется в резком изменении зависимости $\Lambda(T)$ с возрастающей на убывающую при снижении температуры. Это коррелирует с установленным выше снижением отношения γ_a/γ_m при этом переходе для $\lambda = \lambda_2$. Слабое изменение $\Lambda(T)$ в фазе B_{cr} соответствует кристаллическому состоянию смектических слоев этой фазы при жидкостном состоянии слоев фазы SmA.

Для молекул 40.8 [12], ЕЕВМ [13] и МВВА [28] с тем же остовом, что и для молекул 20.2С, изменение величин γ_r при переходах *I–N–SmA–B_{cr}* зависит от конкуренции двух факторов. Первый связан с изменением электронного сопряжения молекулярных фрагментов при изменении φ и проявляется в возрастании $\gamma_{\parallel,m,a}$ с уменьшением φ при росте S и повышении плотности упаковки молекул в смектических слоях [7, 12, 13, 28]. Второй фактор обусловлен диполь-дипольными индукционными межмолекулярными взаимодействиями, которые приводят к снижению $\gamma_{\parallel,a}$, росту $\gamma_{\perp,t}$ и слабому изменению γ_m с ростом S и уплотнением молекулярных слоев [4, 29]. Рост величин $\lambda_{\parallel,a}$, S_{β} и Л в фазе SmA с понижением температуры указывает на преобладание первого фактора. Снижение этих величин и отношения γ_a/γ_m при $\lambda =$ λ₂ свидетельствует о преобладании второго фактора, который обусловливает сильный рост коэффициента $G_{1\perp}$ (3) в фазе B_{cr} при отсутствии влияния актуальных электронных переходов на $\gamma_{\perp t}$ из-за высоких значений S.

Выводы

Представленный материал показывает новые возможности использования зависимостей $G_r(T,\lambda)$, полученных с экспериментальными значениями параметров локального поля L_j и f_j, для исследования молекулярной природы фазового перехода SmA-B_{cr}. Приведенные для ЖК 2О.2С первые данные о величине и характере изменения S(T) при слабом фазовом переходе первого рода SmA-B_{cr} демонстрируют отсутствие однозначной связи между скачком $\Delta S(T_{AB})$ и энтальпией $\Delta H(B-A)$ этого перехода в противоположность переходам первого рода SmA-N [7]. Это указывает на существенные вклады в $\Delta H(B-A)$ от молекулярных степеней свободы, не влияющих на изменение S при кристаллизации смектических слоев. Учет особенностей изменения $G_r(T)$ в смектических фазах 20.2С при фиксированном λ показал снижение отношения γ_a/γ_m при переходе *SmA*-*B*_{cr}. Развитая здесь теория дисперсии компонент $G_r(T,\lambda)$ при заданном T дает связь величин $\lambda_r(T)$, характеризующих спектр компонент $G_r(T,\lambda)$, со значениями S(T) и параметрами S₆(T) эффективной поляризации актуальных электронных переходов, определяющих дисперсию $G_r(\lambda)$ в видимой области. Использование теоретических выражений для λ_r и экспериментальных значений λ_r позволило определить температурные зависимости величин $S_{\beta}(T)$ и отношения $\Lambda(T)$ = $(\gamma_a^{(\infty)} - \gamma_{ab})/(\gamma_m^{(\infty)} - \gamma_{mb})$ вкладов актуальных электронных переходов в значения $\gamma_r^{(\infty)} = \gamma_r (\lambda >> \lambda_{1-\mu})$. Слабый фазовый переход SmA-B_{cr} проявляется в смене возрастающих линейных зависимостей $S_{\beta}(T)$, $\Lambda(T)$ на убывающие с изломом в точке Т_{АВ}. Изменение структурной упорядоченности и свойств молекул

при переходе *SmA*–*B_{cr}* происходит взаимосогласованно, что необходимо учитывать при теоретическом описании данного перехода и интерпретации усредненных по ансамблю молекулярных характеристик, определяемых экспериментально.

Данная работа выполнена в рамках проекта 0356-2015-0412 Комплексной программы Сибирского отделения РАН № II.2П.

Список литературы / References

- 1. De Gennes P.G., Prost J. The physics of liquid crystals. Oxford: Clarendon Press, 1993, 597 p.
- Аверьянов Е. М. Изменение средней поляризуемости молекул и анизотропии тензора Лорентца при фазовом переходе нематик – смектик А и в гомологическом ряду // ЖФХ. 2012. Т. 86, № 5. С. 810–818. [Aver'yanov E.M. Mean polarizability of molecules and anisotropy of the Lorentz tensor upon a nematic – smectic A phase transition: their behavior in a homologous series. *Russ. J. Phys. Chem. A.*, 2012, 86 (5), 720–728. DOI: 10.1134/S0036024412050044].
- Аверьянов Е. М. Новые особенности фазового перехода смектик-А – кристалл-В в гомологичесском ряду жидких кристаллов // Письма в ЖЭТФ. 2014. Т. 97, № 3. С. 855–862.
 DOI: 10.7868/S0370274X14030102. [Aver'yanov E.M. New features of a smectic-Acrystal-B phase transition in a homologous series of

crystal-*B* phase transition in a homologous series of liquid crystals. *JETP Lett.*, 2014, **99** (3), 158–163. **DOI:** 10.1134/S0021364014030047].

- Аверьянов Е. М. Эффекты локального поля в оптике жидких кристаллов. Новосибирск : Наука, 1999. 552 с. [Aver'yanov E.M. Effects of local field in optics of liquid crystals. Novosibirsk : Nauka, 1999, 552 p. (in Russ.). DOI: 10.13140/RG.2.1.4720.6882].
- Аверьянов Е. М. Анизотропия локального поля световой волны в квазидвумерных объектах «мягкой материи» // ЖЭТФ. 2010. Т. 137, № 4. С. 705–720. [Aver'yanov E.M. Local-field anisotropy of a light wave in quasi-two-dimensional soft-matter objects. *JETP*, 2010, **110** (4), 622–636. DOI: 10.1134/S1063776110040102].
- Чандрасекар С. Жидкие кристаллы. М. : Мир, 1980.
 344 с. [Chandrasekhar S. Liquid crystals. 2nd ed. Cambridge Univ. Press, 1992, 460 p.].
- Аверьянов Е. М. Стерические эффекты заместителей и мезоморфизм. Новосибирск : Изд-во СО РАН, 2004. 470 с. [Aver'yanov E.M. Steric effects of substituents and mesomorphism. Novosibirsk : Publ. House of the Siberian Branch of the Russ. Acad. Sci., 2004, 470 p. (in Russ.).

DOI: 10.13140/RG.2.1.5146.6726].
8. Arnold H. Heat capacity and enthalpy of transition of aromatic liquid crystals. *Mol. Cryst.*, 1966, 2 (1–2).

63-70. DOI: 10.1080/15421406608083060.

- 9. Pelzl G., Sackmann H. Birefringence and polymorphism of liquid crystals. Symp. Faraday Soc., 1971, 5, 68-78. DOI: 10.1039/SF9710500068.
- 10. Levelut A.M., Lambert M. Structure des cristaux liquides smectiques B. Compt. Rend. Acad. Sci. B, 1971, 272 (17), 1018-1021. http://gallica.bnf.fr/ark:/12148/bpt6k480293k/f1032.i mage.r=1717%20avril%201971.
- 11. Diel S., Brand P., Sackmann H. X-ray diffraction and polymorphism of smectic liquid crystals. I. A-, B- and C-modifications. Mol. Cryst. Liq. Cryst., 1972, 16 (1-2), 105-116. DOI: 10.1080/15421407208083583.
- 12. Аверьянов Е. М. Изменение поляризуемости молекул при фазовых переходах изотропная жидкость – нематик – смектик А – кристалл В в жидком кристалле 40.8 // Жидк. крист. и их практич. использ. 2017. Т. 17, № 2. С. 6-13. [Aver'yanov E.M. Change of polarizability of molecules at the isotropic liquid – nematic – smectic A - crystal *B* phase transitions of the liquid crystal 4O.8. Zhid. krist. ikh prakt.ispol'z. = Liq. Cryst. and their Appl., 2017, 17 (2), 6-13. DOI: 10.18083/LCAppl.2017.2.6].

- 13. Аверьянов Е. М. Влияние нематического и смектического порядка на поляризуемость молекул жидкого кристалла этил-*p*-(4-этоксибензилиденамино-) α-метилциннамата // ФТТ. 2013. Т. 55, № 11. C. 2271–2275. [Aver'yanov E.M. Influence of nematic and smectic order on polarizability of molecules of ethyl-p-(4-ethoxybenzylideneamino-)a-methylcinnamate liquid crystal. Phys. Solid St., 2013, 25 (11), 2391-2396. DOI: 10.1134/S1063783413110048].
- 14. Pelzl G., Vetters D., Demus D. Orientational order of dissolved molecules in the nematic, smectic A and smectic B phases of 4-n-hexyloxybenzylidene-4'-nhexylaniline. Kristall und Technik., 1979, 14 (4), 427-430. DOI: 10.1002/crat.19790140409.
- 15. Blinc R., Vilfan M., Seliger J. 14N NQR and orientational ordering in smectic liquid crystals. Bull. Magn. Reson., 1983, 5, 51-76.
- 16. Calucci L., Geppi M., Veracini C.A. A ²H NMR study of orientational order and spin relaxation in the *p*-hexyloxybenzylidene-*p*'-fluoroaniline. mesogen Mol. Cryst. and Liq. Cryst., 1997, 303, 415-429. DOI: 10.1080/10587259708039452.
- 17. Domenici V., Geppi M., Veracini C.A. NMR in chiral and achiral smectic phases: Structure, orientational order and dynamics. Progr. Nucl. Magn. Reson. Spectrosc., 2007, 50, 1-50. DOI:10.1016/j.pnmrs.2006.10.001.
- 18. Beguin A., Billard J., Bonamy F., Buisine J.M., Cuvelier P., Dubois J.C., Le Barny P. Benzilidene anilin derivatives. Mol. Cryst. Liq. Cryst., 1984, 115 (1-4), 60-100. **DOI:** 10.1080/00268948408073741.
- 19. Levelut A.M., Doucet J., Lambert M. Etude par diffusion de rayons X de la nature des phases smectique B et de la transition de phase solide-smectique B. J. de Phys., 1974, 35 (10), 773-779. DOI: 10.1051/jphys:019740035010077300.

- 20. Poldy F., Dvolaitzky, Taupin C. ESR studies of smectic phases. J. de Phys. Colloq. C1, 1975, 36 (3), C1-27-C1-36. DOI: 10.1051/jphyscol:1975104.
- 21. Стишов С. М., Нефедов С. Н., Зисман А. Н. Кроссовер между двумерным и трехмерным плавлением при фазовом переходе смектик-В – смектик-А в ББОА // Письма в ЖЭТФ. 1982. Т. 36, № 8. С. 284-287. [Stishov S.M., Nefedov S.N., Zisman A.N. Crossover between two- and three-dimensional melting in a smectic-B – smectic-A phase transition in BBOA. JETP Lett., 1982, 36 (8), 264-267].
- 22. Стишов С. М. Энтропия, беспорядок, плавление // УФН. 1988. Т. 154, № 1. С. 93-122. [Stishov S.M. Entropy, disorder, melting. Sov. Phys. Usp., 1988, 31 (1), 52-67.

DOI: 10.1070/PU1988v031n01ABEH002535].

- 23. Smith G.W., Gardlund Z.G. Liquid crystalline phases in a doubly homologous series of benzylideneanilinestextures and scanning calorimetry. J. Chem. Phys., 1973, **59** (6), 3214–3228. **DOI:** 10.1063/1.1680463.
- 24. Doucet J. Relation between the herringbone packing and the chain behavior in the ordered smectic phases. J. de Phys. Lett., 1979, 40 (8), L-185-L-187. DOI: 10.1051/jphyslet:01979004008018500.
- 25. Mizuno M., Shinoda T., Mada H., Kobayashi S. Electronic Spectra of N-(p-methoxybenzylidene)-p-n-Butylaniline (MBBA). Mol. Cryst. and Lig. Cryst., 1978. 41 (Letters). (6). 155-160. DOI: 10.1080/00268947808070290.
- 26. Mizuno M., Shinoda T. Internal rotation of N-(pmethoxybenzylidene)-p-n-butylaniline (MBBA) and benzylidene-aniline (BA). Mol. Cryst. and Liq. Cryst., 1981, 69 (1-2), 103-118. DOI: 10.1080/00268948108072691.
- 27. Штерн Э., Тиммонс К. Электронная абсорбционная спектроскопия в органической химии. М. : Мир, 1974. 295 c. [Stern E.S., Timmons C.J. Electronic absorption spectroscopy in organic chemistry. 3rd ed. London : Edward Arnold Publishers, 1970, 295 p.].
- 28. Аверьянов Е. М. Ориентационный порядок и поляризуемость молекул в нематическом жидком кристалле // ФТТ. 2014. Т. 56, № 5. С. 1019–1023. [Aver'yanov E.M. Orientational order and polarizability of molecules in a nematic liquid crystal. Phys. Sol. St., 2014, 56 (5), 1058–1063. DOI: 10.1134/S1063783414050035].
- 29. Аверьянов Е. М., Шабанов В. Ф. Структурная упоря-
- доченность одноосных жидких кристаллов и эффективная молекулярная поляризуемость // Кристаллография. 1981. Т. 26, № 1. С. 174-177. [Aver'yanov E.M., Shabanov V.F. Structural ordering of uniaxial liquid crystals and effective molecular polarizability. Sov. Phys. Crystallogr., 1981, 26 (1), 96-98].

Поступила в редакцию 3.08.2017 г. Received 3 August 2017