УДК 536.654:547.466

Е. Ю. Тюнина, В. Г. Баделин

РЕГРЕССИОННЫЙ АНАЛИЗ ЭНТАЛЬПИЙ СУБЛИМАЦИИ АМИНОКАРБОНОВЫХ КИСЛОТ

REGRESSION ANALYSIS OF SUBLIMATION ENTHALPIES OF AMINO CARBOXYLIC ACIDS

Институт химии растворов РАН, лаборатория термодинамики растворов неэлектролитов и биологически активных веществ 153045 Иваново, ул. Академическая, д. 1. E-mail: <u>vgb@isc-ras.ru</u>

Используя метод регрессионного анализа, проведена оценка энтальпий сублимации некоторых аминокарбоновых кислот. Предложено четырех-параметровое уравнение для связи объемно-удельной энтальпии сублимации с физико-химическими дескрипторами биомолекул. Показано удовлетворительное согласие между вычисленными и экспериментально определенными значениями $\Delta_{subl}H$, что свидетельствует о пригодности данного подхода для оценки термодинамических свойств сложных соединений.

Using regression analysis method, the estimation of sublimation enthalpies of some amino carboxylic acids has been carried out. The equation reflecting the dependence of volumes' specified sublimation enthalpy on four physicochemical descriptors has been received. The agreement between the calculation and experimental data of $\Delta_{subl}H$ is lain in limits of uncertainty to be suitable for estimation of thermodynamics properties of complex compounds.

Ключевые слова: регрессионный анализ, энтальпия, сублимация, физикохимические дескрипторы, термодинамические свойства

Key words: regression analysis, enthalpy, sublimation, physicochemical descriptors, thermodynamics properties

Процессы испарения играют важную роль в таких областях современной техники, как получение сверхчистых веществ, вакуумная металлургия и др. Знание теплот испарения (сублимации) необходимо для моделирования сложных высокотемпературных процессов, включающих фазовые превращения, представляет большой интерес с точки зрения физико-химии твердого тела, весьма актуально в связи с развитием микроэлектроники и нанотехнологий [1 - 3]. Несмотря на значительное число экспериментальных и теоретических исследований, посвященных изучению процессов парообразования различных веществ, особый интерес вызывают молекулярные органические кристаллы, экспериментальное определение энтальпий парообразования которых затруднено [4 - 7].

В настоящей работе предпринята попытка оценки энтальпий сублимации ($\Delta_{subl}H$) аминокислот, являющихся простейшими структурными элементами протеинов. Величины $\Delta_{subl}H$ этих соединений не только отражают степень межмолекулярных взаимодействий их в кристаллической форме, но и во многом определяют характер взаимо-

[©] Тюнина Е. Ю., Баделин В. Г., 2008

действия биомолекул при растворении [8]. В отличие от других молекулярных кристаллических веществ, аминокислоты имеют важную особенность. Значения pK (pK~2 для карбоксильных групп и рК~9 для аминогрупп) таковы, что в пределах диапазона рН внутри клетки, то есть примерно 7, аминокислоты существуют в форме биполярных, или цвиттерионных соединений: NH₃⁺-CH(R)-COO⁻ [8, 9]. Таким образом, молекулы аминокислот и в растворе, и в кристаллическом состоянии находятся в цвиттерионной форме [10, 11] и могут быть охарактеризованы как молекулярные кристаллы с сильным водородным связыванием [11]. Структура кристаллических биовеществ и природа водородных связей непосредственно обусловлена электронным строением их молекул, которые обладают значительными по величине эффективными зарядами на группах СОО⁻ и NH₃⁺. Это объясняет довольно большие дипольные моменты аминокислот, их более высокую растворимость в воде, чем в органических растворителях [8, 9]. Кроме того, они имеют довольно высокие точки плавления (испарения) (обычно около 200 - 300 °C). Некоторые аминокарбоновые кислоты разлагаются либо до испарения, либо в процессе сублимации [6]. Это осложняет экспериментальное нахождение их энтальпий сублимации и свидетельствует о том, что в кристаллах сила межмолекулярного электростатического притяжения соизмерима с прочностью внутримолекулярных ковалентных связей [8, 12]. Поэтому теоретическая оценка $\Delta_{subl}H$ молекулярных кристаллов не потеряла своей актуальности до сих пор. Тем более, что методы расчета Δ_{subl}Н сравнительно немногочисленны и ориентированы в основном на органические соединения, не содержащие атомов N и O [5, 7].

Анализ имеющихся результатов по определению $\Delta_{subl}H$ для различных аминокислот [5-7, 13, 14] показал, что наиболее перспективными для решения поставленной задачи являются аддитивный подход групповых вкладов, метод корреляции «структура - свойство» и метод атом-атомных потенциальных функций. Все они позволяют получать теплоты сублимации с близкими по величине коэффициентами корреляций и стандартными отклонениями. В настоящей работе применен метод регрессионного анализа для поиска корреляций между $\Delta_{subl}H$ и строением молекул исследуемых веществ. В качестве базовых функций строения соединения (так называемых дескрипторов [7]) были выбраны молекулярный объем Ван-дер-Ваальса (V_W), плотность упаковки молекул $D = V_W/V_m$ (где V_m – мольный объем кристаллического вещества, рассчитанный из его плотности [15]), площадь молекулярной поверхности (S_a), молекулярная масса вещества (М) и способность молекул к образованию водородной связи (H_B). Следует отметить, что параметр Н_В представляет сумму максимально возможного числа Н-связей для различных функциональных групп, содержащих соответствующие донорные или акцепторные атомы [16]. Значения S_a исследуемых соединений определены нами на основе квантово-химических вычислений методом АМ1 [17]. Расчет Ван-дер-Ваальсовых объемов молекул исследуемых аминокислот проводился на основе использования инкрементов объемов δV_i атомов, полученных методом численного интегрирования в [18]. Этот метод позволяет учитывать пространственные пересечения трех и более Ван-дер-Ваальсовых сфер валентно несвязанных атомов в одной точке, что имеет принципиальное значение для получения более точных объемов стерически сложных молекул и молекул, содержащих внутримолекулярные водородные связи. В табл. 1 представлены значения используемых дескрипторов структуры аминокарбоновых кислот.

При проведении сравнительного термодинамического анализа разных соединений предпочтительнее использовать объемно-удельные параметры [19], получаемые путем деления молярного свойства (Δ_{subl} H) на объем (V_W). Отношение Δ_{subl} H /V_W характеризует величину объемно-удельной энтальпии сублимации вещества, учитывающую размеры исследуемой многоатомной молекулы. На основе обобщения имеющихся данных по Δ_{subl}H [6, 7, 13, 14] проведен анализ особенностей тепловых эффектов при сублимации аминокарбоновых кислот.

Таблица 1

R-	$\Delta_{ m subl} H$	$\Delta_{\text{subl}} H$	lgM	Sa	D	HB
	exp	calc				[16]
-H	136,4±2 [13]	140	1,875	1,988	0,83	0
-CH ₃	144,8±4,2 [7]	148	1,949	2,274	0,76	0
-CH ₃	138,1±4 [14]	147	1,949	2,275	0,77	0
-CH ₃	_	149	1,949	2,379	0,79	0
-CH(CH ₃) ₂	_	161	2,068	2,750	0,72	0
-CH(CH ₃) ₂	162,8±0,8 [13]	160	2,068	2,752	0,73	0
-CH ₂ -CH-(CH ₃) ₂	_	151	2,117	3,097	0,70	0
-CH ₂ -CH-(CH ₃) ₂	150,6±0,8 [13]	150	2,117	3,069	0,70	0
-CH ₂ -OH	168±6 [6]	154	2,021	2,233	0,80	3
-CH(OH)-CH ₃	_	163	2,076	2,494	0,78	3
-(CH ₂ CH ₂ CH ₂)-	149±4 [14]	155	2,061	2,409	0,72	2
-CH ₂ -(C ₆ H ₅)	153,9±0,9 [14]	158	2,217	2,927	0,68	0
-(CH ₂) ₃ -NH-	-	142	2,241	3,220	0,74	6
C(=NH)-NH ₂						
	R- -H -CH ₃ -CH ₃ -CH ₃ -CH ₂ -CH ₂ -CH ₃) ₂ -CH ₂ -CH ₂ -CH ₃) ₂ -CH ₂ -CH-(CH ₃) ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₂ -CH ₂ -CH ₂) ₃ -CH ₂ -CH ₂ -CH ₂ -NH- C(=NH)-NH ₂	R- Δ _{subl} H exp -H 136,4±2 [13] -CH ₃ 144,8±4,2 [7] -CH ₃ 138,1±4 [14] -CH ₃ - -CH(CH ₃) ₂ - -CH(CH ₃) ₂ - -CH ₂ -CH-(CH ₃) ₂ - -CH ₂ -CH-(CH ₃) ₂ 150,6±0,8 [13] -CH ₂ -CH 168±6 [6] -CH ₂ -CH ₂ CH ₂ CH ₂ 149±4 [14] -CH ₂ -CC ₆ H ₅ 153,9±0,9 [14] -CH ₂ -SNH- - C(=NH)-NH ₂ -	R- Δ _{subl} H Δ _{subl} H exp calc -H 136,4±2 [13] 140 -CH ₃ 144,8±4,2 [7] 148 -CH ₃ 138,1±4 [14] 147 -CH ₃ - 149 -CH ₃ - 149 -CH ₃ - 161 -CH ₃ - 161 -CH(CH ₃) ₂ - 151 -CH(CH ₃) ₂ 162,8±0,8 [13] 160 -CH ₂ -CH-(CH ₃) ₂ - 151 -CH ₂ -CH-(CH ₃) ₂ - 151 -CH ₂ -CH-(CH ₃) ₂ 150,6±0,8 [13] 150 -CH ₂ -CH 168±6 [6] 154 -CH(OH)-CH ₃ - 163 -(CH ₂ CH ₂ CH ₂)- 149±4 [14] 155 -CH ₂ -(C ₆ H ₅) 153,9±0,9 [14] 158 -(CH ₂) ₃ -NH- - 142 C(=NH)-NH ₂ I I	R- $\Delta_{subl}H$ exp $\Delta_{subl}H$ calclgM lgM-H136,4±2 [13]1401,875-CH3144,8±4,2 [7]1481,949-CH3138,1±4 [14]1471,949-CH3-1491,949-CH3-1491,949-CH3-1612,068-CH(CH3)2-1612,068-CH(CH3)2162,8±0,8 [13]16002,016-CH2-CH-(CH3)2-1512,117-CH2-CH-(CH3)2-1512,021-CH2-CH-(CH3)2150,6±0,8 [13]15002,117-CH2-OH168±6 [6]1542,021-CH(OH)-CH3-1632,076-(CH2/CH2CH2)-149±4 [14]1552,061-CH2-(C6H5)153,9±0,9 [14]1582,217-(CH2)3-NH1422,241C(=NH)-NH2III	R- $\Delta_{subl}H$ $\Delta_{subl}H$ $\Delta_{subl}H$ lgM S_a -H 136,4±2 [13] 140 1,875 1,988 -CH ₃ 144,8±4,2 [7] 148 1,949 2,274 -CH ₃ 138,1±4 [14] 147 1,949 2,275 -CH ₃ - 149 1,949 2,379 -CH ₃ - 149 1,949 2,379 -CH(CH ₃) ₂ - 161 2,068 2,750 -CH(CH ₃) ₂ 162,8±0,8 [13] 160 2,068 2,750 -CH ₂ -CH-(CH ₃) ₂ - 151 2,117 3,097 -CH ₂ -CH-(CH ₃) ₂ 150,6±0,8 [13] 150 2,117 3,069 -CH ₂ -CH-(CH ₃) ₂ 150,6±0,8 [13] 150 2,117 3,069 -CH ₂ -CH-(CH ₃) ₂ 149±4 [14] 155 2,061 2,494 -(CH ₂ -CH ₂ CH ₂)- 149±4 [14] 155 2,061 2,409 -CH ₂ -(C ₆ H ₅) 153,9±0,9 [14] 158 2,217 2,927	R- Δ _{subl} H Δ _{subl} H Δ _{subl} H IgM S _a D -H 136,4±2 [13] 140 1,875 1,988 0,833 -CH ₃ 144,8±4,2 [7] 148 1,949 2,274 0,76 -CH ₃ 138,1±4 [14] 147 1,949 2,275 0,77 -CH ₃ - 149 1,949 2,379 0,79 -CH ₃ - 149 1,949 2,379 0,79 -CH ₃ - 161 2,068 2,752 0,79 -CH(CH ₃) ₂ - 161 2,068 2,752 0,79 -CH ₂ -CH-(CH ₃) ₂ 150,6±0,8 [13] 160 2,068 2,752 0,70 -CH ₂ -CH-(CH ₃) ₂ 150,6±0,8 [13] 150 2,117 3,069 0,70 -CH ₂ -CH-(CH ₃) ₂ 168±6 [6] 154 2,021 2,233 0,80 -CH ₁ OH)-CH ₃ - 1 155 2,061 2,409 0,72 -CH ₂ -Ch ₄ C ₁ C ₁ 15

Экспериментальные и вычисленные значения энтальпии сублимации и структурные дескрипторы аминокислот (NH₃⁺-CH(R)-COO⁻)

Используя корреляционный подход, установлено четырех-параметровое уравнение для определения Δ_{subl}Н исследуемых соединений

$$(\Delta_{\text{subl}} \text{H/V}_{\text{W}}) = a_0 + b_1 lg \text{M} + b_2 \text{H}_{\text{B}} + b_3 \text{D} + b_4 (S_a/100).$$
(1)

Оценка коэффициентов a₀, b₁, b₂, b₃, b₄ проведена стандартным методом многопараметрового регрессионного анализа.

Таблица 2

a_0	b ₁	b ₂	b ₃	b ₄	r _{corr}	S	n
5,8	-2,37	-0,035	4,53	-0,641	0,9848	0,128	13
±1,6	$\pm 0,98$	±0,023	±1,9	±0,21			

Коэффициенты уравнения (1)

Как видно из табл. 2, все коэффициенты статистически значимы (при доверительной вероятности 0,95). В результате расчетов получены значения $\Delta_{subl}H_{calc}$ для аминокислот, приведенные в табл. 1. Статистический анализ имеющихся данных и полученных результатов показал, что если $|(Y_{i,exp}-Y_{i,calc})/S_y| \ge 2$ (где S_y – среднеквадратичная погрешность) [13], то такие значения Y_i не укладываются в корреляционную схему и не указываются в таблицах. По-видимому, требуется перепроверка имеющихся экспериментальных данных для этих аминокислот или выяснение возможных неучтенных эффектов в параметрах схемы. Оценка степени соответствия корреляционной зависимости экспериментальным данным проводилась по минимальной дисперсии распределения (S), которую также называют выборочным стандартным отклонением для регрессии, и по коэффициенту корреляции (r_{corr}). Принимая во внимание, что коэффициент r_{corr} является случайной величиной, проводилась оценка его средней квадратичной ошибки по формуле: $\sigma_r = (1-r_{corr}^2)/\sqrt{n}$ (где n – число веществ в выборке) [20]. Для представленной корреляционной зависимости величина $|r_{corr}| > 3\sigma_r$, что подтверждает наличие связи между параметрами.

Таблица 3

	lgM	H _B	D	$S_{a}/100$
lgM	1,00			
H _B	0,4508	1,00		
D	0,7486	0,0410	1,00	
Sa	0,8766	0,1085	0,4737	1,00

Корреляционная матрица параметров уравнения (1)

Табл. 3 представляет корреляционную матрицу для используемых дескрипторов уравнения (1). Существует некоторое взаимовлияние между lgM и D, а также между lgM и S_a. Остальные параметры слабо зависят друг от друга. Дескрипторы учитывают изменение Δ_{subl} Н аминокислот от массы (lgM), площади молекулярной поверхности (S_a/100) (гидрофобные вклады) и образования водородных связей (H_B), которые дают отрицательные вклады в величину Δ_{subl} Н. Параметр D, учитывая геометрический фактор, оказывает положительное влияние на Δ_{subl} Н исследуемых соединений.

Как видно из табл. 1, среди аминокислот, имеющих неполярный алифатический боковой радикал, Gly отличается меньшей по величине долей пустого пространства в ячейке, занимаемой 1 моль. Значение его объемно-удельной энтальпии сублимации максимально. Вместе с тем, наблюдается тенденция увеличения Δ_{subl} при переходе от

Gly к Leu. Это может быть обусловлено, вероятно, изменением степени заторможенного внутреннего вращения относительно связи C_{α} -N и вкладом бокового углеводородного радикала. Наличие бензольного кольца в Phe по сравнению с Ala приводит к существенному изменению Δ_{subl} H, при этом D(Phe)<D(Ala). По-видимому, молекулы Ala несколько более симметричны и плотнее упаковываются в кристалле. Для аминокислот, содержащих в боковой цепи полярную OH-группу, повышение кристаллографической упаковки от D(Thr) к D(Ser) не сопровождается увеличением $\Delta_{subl}H_{calc}$, что может быть связано с вкладом от гидрофобных взаимодействий CH₃-группы. Показано, что полученные значения $\Delta_{subl}H_{calc}$ аминокислот возрастают в следующей последовательности: Gly<Arg<DL-Ala< β -Ala<L-Ala<DL-Leu<L-Leu<Ser <Pro< Phe<DL-Val<L-Val<Thr.

Зависимость ($\Delta_{subl}H/V_W$)_{exp} от ($\Delta_{subl}H/V_W$)_{calc} для исследуемых аминокислот

Таким образом, анализ полученных результатов показал удовлетворительное согласие между вычисленными и экспериментально определенными значениями Δ_{subl} H (погрешность $\varepsilon_{cp.} \sim 6,3$ %) (рис.), что свидетельствует о пригодности данного подхода для оценки термодинамических свойств сложных биосоединений. Следует отметить, что значения Δ_{subl} H исследуемых аминокислот, полученные по уравнению (1), согласуются в пределах погрешности с тенденцией изменения Δ_{subl} H этих соединений, рассчитанных нами ранее по другим соотношениям [21], а также с данными на основе аддитивности групповых вкладов [22].

Работа выполнена при финансовой поддержке РФФИ (грант № 07-03-00369).

Список литературы

- 1. Николаев Л. А., Туполев В. А. Физическая химия. М.: Выс. шк., 1967. С. 250.
- 2. Боголюбов Н. А., Машаров С. Н. Испарение атомно- и магнитоупорядоченных кристаллов с дефектами. Новосибирск: Наука, 1989. 209 с.
- 3. Майер К. Физико-химическая кристаллография. М.: Металлургия, 1972. 480 с.
- 4. Физика и химия твердого состояния органических соединений. М.: Мир, 1967. 738 с.
- 5. Брединайдер С. Свойства газов и жидкостей. М.; Л.: Химия, 1966. С. 212.
- 6. *De Kruif C.* G., Voogd J., Offringa J.C. A. // J. Chem. Thermodynamics. 1979. Vol. 11. P. 651.
- 7. *Арнаутова Е. А., Захарова М. В., Пивина Т. С. и др. //* Изв. АН. Сер. хим. 1996. № 12. С. 2872.
- 8. Кемпбел Дж. Современная общая химия. М.: Мир, 1975. Т. 3. С. 368.
- 9. Клаус В., Павличек З. Биофизическая химия. М.: Мир, 1985. 466 с.
- 10. Coppens Ph. et al. // J. Am. Chem. Soc. 1999. Vol. 121. P. 2585.
- 11. Молекулярные взаимодействия / Под ред. Г. Ратайчак, У. Орвилл-Томаса. М.: Мир, 1984. С. 184.
- 12. Коттерел Т. Прочность химической связи. М.: ИЛ, 1956. С. 133.
- 13. *Лебедев Ю. А., Мирошниченко Е. А.* Термохимия парообразования органических веществ. М.: Наука, 1981. 216 с.
- 14. Chickos J. S., Acree W. E. // J. Phys. Chem. Ref. Data. 2002. Vol. 31. P. 537.
- 15. Berlin E., Pallansch M. J. // J. Phys. Chem. 1968. Vol. 72. P. 1887.
- 16. Palekar D., Shiue M., Lien E. J. // Pharmaceut. Res. 1996. Vol. 13. P. 1191.
- 17. Dewar M. J. S., Zoebisch E. G., Healy E. F., Stewart J. J. P. // J. Am. Chem. Soc. 1985. Vol. 107. P. 3902.
- 18. Кузьмин В. С., Кацер С. Б. // Изв. АН. Сер. хим. 1992. № 4. С. 922.
- 19. Reis J. C. R. et al. // Phys. Chem. Chem. Phys. 2001. Vol. 3. P. 1465.
- 20. Лесникович А. И., Левчик С. В. Корреляции в современной химии. М., 1989. 118 с.
- 21. Тюнина Е. Ю, Баделин В. Г. // Биофизика. 2005. Т. 75. С. 1806.
- 22. *Куликов О. В., Лапшев П. В. //* Изв. вузов. Сер. хим. и хим. технол. 1997. Т. 40. С. 53.

Поступила в редакцию 7.04.2008 г.