УДК 532.783

Е. М. Аверьянов

ТЕМПЕРАТУРНОЕ ПОВЕДЕНИЕ ПОКАЗАТЕЛЕЙ ПРЕЛОМЛЕНИЯ КВАЗИНЕМАТИЧЕСКОГО СЛОЯ ХОЛЕСТЕРИКА И ДИСКОИДНОГО НЕМАТИКА

TEMPERATURE BEHAVIOUR OF REFRACTIVE INDICES OF QUASI-NEMATIC LAYER OF CHOLESTERIC AND DISCOID NEMATIC

Институт физики им. Л. В.Киренского Сибирского Отделения РАН, 660036 Красноярск, Россия. E-mail: <u>aver@iph.krasn.ru</u>

Исследованы температурные зависимости показателей преломления $n_{0,e}(t)$ и величин $\langle n \rangle = (n_e + 2n_0)/3$, $\overline{\epsilon} = (n_e^2 + 2n_o^2)/3$, $\overline{n} = \overline{\epsilon}^{1/2}$ для квазинематического слоя каламитного холестерика (дискоидного нематика) при наличии точки t_0 (t_e) минимума функции $n_0(t)$ ($n_e(t)$) внутри (вне) интервала холестерической (нематической) фазы. Для квазинематического слоя (дискоидного нематика) установлены линейные зависимости $\langle n \rangle(t)$, $\overline{\epsilon}(t)$, $\overline{n}(t)$ и подтверждены полученные ранее соотношения, связывающие коэффициенты этих зависимостей со значениями $n_e(t_0)$ и $\overline{n}(t_0)$ ($n_0(t_e)$ и $\overline{n}(t_e)$). Для двух рассматриваемых типов нематиков установлены противоположные соотношения между коэффициентами зависимости $\langle n \rangle(t)$, или $\overline{n}(t)$, в мезофазе и зависимости $n_i(t)$ в изотропной фазе.

The temperature dependences of the refractive indices $n_{o,e}(t)$ and the values $\langle n \rangle = (n_e + 2n_o)/3$, $\overline{\epsilon} = (n_e^2 + 2n_o^2)/3$, $\overline{n} = \overline{\epsilon}^{1/2}$ were studied for the quasi-nematic layer of the calamitic cholesteric (discoid nematic) liquid crystal in the presence of the minimum point t_o (t_e) of the function $n_o(t)$ ($n_e(t)$) within (out of) the range of cholesteric (nematic) phase. For the quasi-nematic layer (discoid nematic) the linear dependences $\langle n \rangle(t)$, $\overline{\epsilon}(t)$, $\overline{n}(t)$ were established and the relationships derived earlier and connecting the coefficients of these dependences with the values of $n_e(t_o)$ and $\overline{n}(t_o)$ ($n_o(t_e)$ and $\overline{n}(t_e)$) were confirmed. For the two types of nematics the reverse correlations were established between the coefficients of the dependences $\langle n \rangle(t)$, or $\overline{n}(t)$, in the mesophase and the dependence $n_i(t)$ in the isotropic phase.

Введение

В связи с миниатюризацией компонентов технических устройств и переходом к мезоскопическому (нано-) уровню их масштабов в настоящее время повышенный интерес и актуальность представляют особенности физических свойств конденсированных сред и, в частности, жидких кристаллов (ЖК), связанные с локальной симметрией и анизотропией таких сред на нано-масштабах, наличием иерархии уровней их структурной организации, возможным разнообразием локальных структур при одинаковой макроскопической симметрии среды [1]. При этом важно разделять эффекты,

[©] Аверьянов Е. М., 2008

связанные и не связанные с локальной симметрией и анизотропией среды, чтобы предвидеть степень их проявления при изменении размеров образца или элемента технического устройства.

Для молекулярных сред и ЖК в отсутствие специфических межмолекулярных взаимодействий (комплексообразования, водородных связей) характер молекулярной упаковки, её локальная симметрия и анизотропия на нано-масштабах определяются стерическим отталкиванием молекул и молекулярной формой. В этом отношении важными объектами сравнительного изучения являются каламитные (N) и дискоидные (N_D) нематики с одинаковой точечной группой D_{∞h} макроскопической симметрии, но разной формой молекул. Это различие проявляется в различии локальной структуры фаз N и N_D, которая характеризуется анизотропией поверхности $F(\mathbf{R})$, отвечающей условию g₂(\mathbf{R}) = Const для парной корреляционной функции молекул g₂(\mathbf{R}), усредненной по молекулярным ориентациям [1]. Здесь \mathbf{R} – радиус-вектор между центрами масс двух молекул. В одноосном нематике на мезоскопических масштабах R ($R_m < R << R_M$), промежуточных между молекулярным R_m и макроскопическим R_M , поверхность $F(\mathbf{R})$ имеет форму сфероида, вытянутого (сплюснутого) вдоль директора **n** для фазы N (N_D). При возрастании \mathbf{R} анизотропия поверхности $F(\mathbf{R})$ уменьшается, а при $R >> R_m$ она обращается в сферу и различие локальной анизотропии фаз N и N_D исчезает.

Различие локальной анизотропии этих нематиков обусловливает различие особенностей их гидродинамики [2 – 4]; различный характер диполь-дипольных межмолекулярных взаимодействий, выделяющий фазу N_D в отношении возможности реализации в ней сегнетоэлектрического состояния [5, 6]; качественное различие особенностей локального поля световой волны [1] и наблюдаемых особенностей в спектрах поляризованного поглощения света, обусловленных резонансными диполь-дипольными взаимодействиями молекул [1, 7 – 10]; качественное различие зависимостей компонент $\gamma_{\parallel,\perp}$ тензора поляризуемости молекул от степени их ориентационной упорядоченности [11, 12].

Эти различия дополняются наличием точки t_0 (t_e) минимума на зависимости $n_0(t)$ (n_e(t)) обыкновенного (необыкновенного) показателя преломления фазы N (N_D) [13]. Однако данное различие фаз N и N_D не связано непосредственно с анизотропией поверхности $F(\mathbf{R})$, поскольку межмолекулярные взаимодействия и анизотропия локального поля световой волны в ЖК, обусловленные анизотропией $F(\mathbf{R})$, вносят относительно малый вклад в значения $\gamma_{\parallel,\perp}$ и $n_{o,e}$ [1, 11, 12]. Соотношения, связывающие коэффициенты линейных зависимостей $\langle n \rangle (t) = (n_e + 2n_o)/3$, $\overline{\epsilon}(t) = (n_e^2 + 2n_o^2)/3$ и $\overline{n}(t) = \overline{\epsilon}^{1/2}$ в каламитных нематиках (холестериках) со значениями $n_e(t_0)$ и $\overline{n}(t_0)$ ($n_0(t_e)$ и $\overline{n}(t_e)$) были получены и подтверждены ранее [13]. Интересно проверить эти соотношения для локальных показателей преломления *n*_{0,е} квазинематического слоя холестерика (квазинематика N_0), в пределах которого поверхность $F(\mathbf{R})$ имеет максимальную анизотропию. Аналогичные соотношения для фазы N_D [13] также еще не проверялись. Известна линейная зависимость $\langle n \rangle (t)$ для фазы N_D смеси с неидеальной фазовой диаграммой [14]. Для фазы N_D чистого ЖК характер зависимостей $\langle n \rangle(t)$, $\overline{\varepsilon}(t)$ и $\overline{n}(t)$, как и проявления специфики этой фазы в соотношениях между коэффициентами зависимости $\langle n \rangle (t)$ в мезофазе и зависимости $n_i(t)$ в изотропной фазе, пока не известны.

Настоящая работа посвящена выяснению этих вопросов для квазинематика N_Q и чистого нематика N_D . Во второй части статьи приведены проверяемые соотношения. Их сравнение с экспериментом и обсуждение даны в третьей части. Четвертая часть содержит обсуждение минимальных размеров нематического образца, сохраняющего рас-

≈≈

≈≈

сматриваемые здесь оптические свойства. В заключении кратко суммированы основные результаты работы.

1. Особенности изменения $n_{o,e}(t)$ в нематиках N_Q и N_D

Рассмотрим совокупность подлежащих проверке соотношений отдельно для квазинематического слоя холестерика (квазинематика N_Q) и дискоидного нематика N_D.

Квазинематик N_Q. Локальная симметрия квазинематика N_Q с директором **n**, перпендикулярным оси спирали **q**, характеризуется точечной группой симметрии D₂ с тремя осями симметрии C₂ вдоль $X||\mathbf{q}, Y||[\mathbf{n}\times\mathbf{q}]$ и $Z||\mathbf{n}|[1]$. Наличие двух физически выделенных направлений **n** и **q** и плоскости **nq** обусловливает локальную двуосность холестерика, которая проявляется в различии главных показателей преломления n_X и n_Y , подтверждаемом коноскопическими исследованиями [15]. Однако локальное двулучепреломление $n_X - n_Y$ термотропных холестериков пока не измерено и, вероятно, по порядку величины не превышает 10^{-3} , что оправдывает обычное использование одноосного приближения $n_X = n_Y = n_0$, $n_Z = n_e$ с двулучепреломлением $\Delta n = n_e - n_0$.

При анализе зависимостей $n_{0,e}(t)$ для квазинематика N_Q используем соотношения

$$n_{\rm o} = \langle n \rangle - \Delta n/3, \qquad n_{\rm e} = \langle n \rangle + 2\Delta n/3.$$
 (1)

Характер зависимости $\langle n \rangle (t)$ для квазинематика N_Q был до сих пор неизвестен. По аналогии с каламитными нематиками [13] можно принять:

$$\langle n \rangle(t) = B_0 - Bt. \tag{2}$$

Температура t(T) соответствует шкале Цельсия (Кельвина). Поскольку значения $\overline{\epsilon}(t)$ и $\overline{n}(t)$ одинаковы для холестерика и квазинематического слоя, а для холестериков были установлены зависимости [13]

$$\overline{n}(t) = b_0 - bt, \qquad \overline{\varepsilon}(t) = g_0 - gt, \qquad (3)$$

то они должны выполняться и для квазинематического слоя. Здесь коэффициенты связаны соотношениями:

$$g_0 = b_0^2$$
, $g \approx 2b_0 b [1 - bt_m/b_0]$. (4)

Значение $t_m = (t_{\min} + t_{\max})/2$ отвечает середине температурного интервала, в котором зависимости $\overline{n}(t)$ и $\overline{\epsilon}(t)$ аппроксимируются формулами (3). Поскольку даже при больших значениях Δn величины $\overline{n} > \langle n \rangle$ отличаются несущественно [13], то из (3) следует справедливость аппроксимации (2). Согласованность формул (2) и (3) можно проверить зависимостью

$$\overline{\varepsilon}(t) = D_0 + D\langle n \rangle(t) \tag{5}$$

с коэффициентами

$$D_0 = g_0 - gB_0/B, \qquad D = g/B.$$
 (6)

Зависимость $\Delta n(T)$ аппроксимируется функцией [1]

$$\Delta n(T) = \Delta n_{\max} (1 - T/T_1)^{\beta}, \tag{7}$$

с подгоночными параметрами Δn_{max} , β и $T_1 > T_{\text{NI}}$, T_{NI} – температура перехода нематик – изотропная жидкость (N–I). В точке t_0 минимума зависимости $n_0(t)$ параметры формул (2) и (7) связаны соотношениями [13]

8

$$B = \frac{\beta \Delta n_{\max}}{3T_1 (1 - T_0 / T_1)^{1 - \beta}}, \qquad t_1 - t_0 = T_1 \exp\left[\frac{1}{(1 - \beta)} \ln\left(\frac{\beta \Delta n_{\max}}{3BT_1}\right)\right].$$
(8)

С учетом (7) из первой формулы (8) следует связь

$$t_1 - t_0 = \frac{\beta}{3B} \Delta n(t_0) \,. \tag{9}$$

В окрестности t_o функция n_o(t) в низшем приближении является параболой

$$n_{\rm o}(t) = n_{\rm o}(t_{\rm o}) + \kappa_{\rm o}(t - t_{\rm o})^2$$
(10)

с коэффициентом $\kappa_{o} = (1/2) \left(\frac{d^2 n_{o}(t)}{dt^2} \right)_{t_{o}}$, который с учетом (7) приводится к виду

$$\kappa_{0} = \frac{B(1-\beta)}{2(t_{1}-t_{0})}.$$
(11)

Коэффициенты формул (2) и (3) связаны соотношениями [13]

$$b/B = n_{\rm e}(t_{\rm o})/\overline{n} (t_{\rm o}), \qquad g/B = 2n_{\rm e}(t_{\rm o}), \qquad g/b = 2\,\overline{n} (t_{\rm o}).$$
(12)

Дискоидные нематики. Для них $\Delta n < 0$ и формулы (1) перепишем в виде:

$$n_{\rm o} = \langle n \rangle + |\Delta n|/3, \qquad n_{\rm e} = \langle n \rangle - 2|\Delta n|/3.$$
 (13)

Для этих ЖК на основании данных [14] можно ожидать выполнения зависимости (2) и предполагать справедливость зависимостей (3), (5). Высокая точность аппроксимации изменения $|\Delta n(t)|$ формулой (7) для обычных и возвратных фаз N_D была показана ранее [1, 16]. Замена в (7) значений Δn и Δn_{max} на $|\Delta n|$ и $|\Delta n|_{\text{max}}$ с учетом (13) позволяет записать аналоги формул (8) следующим образом

$$B = \frac{2\beta |\Delta n|_{\max}}{3T_1(1 - T_e / T_1)^{1 - \beta}}, \qquad t_1 - t_e = T_1 \exp\left[\frac{1}{(1 - \beta)} \ln\left(\frac{2\beta |\Delta n|_{\max}}{3BT_1}\right)\right].$$
(14)

Аналогом формулы (9) является соотношение

$$t_1 - t_e = \frac{2\beta}{3B} |\Delta n(t_e)|.$$
(15)

В окрестности t_e зависимость $n_e(t)$ дается выражением

$$n_{\rm e}(t) = n_{\rm e}(t_{\rm e}) + \kappa_{\rm e}(t - t_{\rm e})^2,$$
 (16)

где коэффициент κ_e отличается от κ_o (11) заменой t_o на t_e . Аналогами соотношений (12) для нематиков N_D являются следующие [13]

$$b/B = n_{\rm o}(t_{\rm e})/\,\overline{n}\,(t_{\rm e}), \qquad g/B = 2n_{\rm o}(t_{\rm e}), \qquad g/b = 2\,\overline{n}\,(t_{\rm e}).$$
 (17)

Сравнение формул (12) и (17) показывает их существенное отличие.

2. Объекты исследования, результаты и обсуждение

Объектами проверки приведенных выше соотношений в настоящей работе взяты смесь холестерилхлорида с холестерилмиристатом в весовом соотношении 1,75:1,00 (Ch-Cl/M, $t_{ChI} = 67,9$ °C) [17] и возвратная нематическая фаза N_{Dre} соединения T3f ($t_{NI} = 82$ °C) [18], структурная формула которого приведена ниже.

 $Cr - 58 \ ^{o}C - \ Col_{hd} - 67 \ ^{o}C - \ N_{Dre} - 82 \ ^{o}C - \ I_{re} - 89 \ ^{o}C - \ Col_{hd} - 183 \ ^{o}C - \ I_{re} - 183 \ ^{o}C -$

Для данных объектов интервалы мезофаз изменяются от 30 (Ch-Cl/M) до 15° (T3f), что важно для проверки формул (2), (3). Для холестерической и изотропной фаз Ch-Cl/M использованы локальные значения $n_{0,e}$ ($\lambda = 632,8$ нм) для квазинематического слоя, измеренные с использованием техники поверхностных плазмонов с точностью около 10⁻⁴ [17]. Для нематической и изотропной фаз T3f значения $n_{0,e}$ ($\lambda = 589$ нм), измеренные на рефрактометре Аббе, взяты из работы [18].

Рис. 1. Температурные зависимости величин $n_e(1)$, $n_o(2)$, $\langle n \rangle$ (3) и $n_i(4)$ в квазинематическом слое холестерической фазы и в изотропной фазе ЖК Ch-Cl/M. Сплошные линии – аппроксимации формулами (1), (2), (7), (19). Штриховая линия – зависимость $n_o(t)$, рассчитанная по формуле (10)

Рис. 2. Температурные зависимости величин $n_e(1), n_o(2), \langle n \rangle (3), n_i(4)$ в нематической и изотропной фазах ЖК ТЗf. Сплошные линии – аппроксимации формулами (2), (7), (13), (19). Штриховая линия – зависимость $n_e(t)$, рассчитанная по формуле (16)

Температурные зависимости величин $n_{o,e}$, $\langle n \rangle$ и n_i для этих ЖК представлены на рис. 1, 2. Для обоих объектов выполняется линейная зависимость (2). Из соотношений

$$n_{\rm e,Ch} = n_{\rm o}, \qquad n_{\rm o,Ch} = [(\varepsilon_{\rm o} + \varepsilon_{\rm e})/2]^{1/2} > (n_{\rm o} + n_{\rm e})/2$$
(18)

для показателей преломления холестерика ($n_{o,e,Ch}$) и его квазинематического слоя ($n_{o,e}$) следует неравенство $\langle n \rangle_{Ch} > \langle n \rangle$, которое усиливается по мере снижения *t* и роста Δn . В

результате коэффициенты $B_{0,Ch}$, B_{Ch} и B_0 , B зависимостей (2) для холестерика и его квазинематического слоя должны подчиняться неравенствам $B_{0,Ch} > B_0$, $B_{Ch} > B$. Так же хорошо для обоих ЖК выполняются зависимости (3), (5) и (7), коэффициенты которых приведены в таблице. При этом соотношения (4), (6) подтверждаются с высокой точностью, особенно для T3f с более точными значениями $n_{0,e}$. Значения B_0 , b_0 , g_0 (B, b, g) для Ch-Cl/M несколько (заметно) выше, чем для T3f.

ЖК	t_1 , °C	$t_1 - t_{e(0)}, {}^{o}C$	$\Delta n_{\rm max}$	β	B_0	b_0
Ch-Cl/M	68,79	4,86	0,0784	0,2069	1,5316	1,5319
T3f	85,43	21,99	0,0996	0,2685	1,5175	1,5180
ЖК	g 0		$B \cdot 10^4$, °C ⁻¹	$b \cdot 10^4$, °C ⁻¹	$g \cdot 10^4$, $^{\rm o}C^{-1}$	
	ОПЫТ	(4)			опыт	(4)
Ch-Cl/M	2,3462	2,3467	4,6133	4,6519	14,0253	14,0272
T3f	2,3036	2,3043	3,8318	3,8908	11,5861	11,5871
WV	b/B		g/B		g/b	
ЖК	ОПЫТ	(12), (17)	ОПЫТ	(12), (17)	ОПЫТ	(12), (17)
Ch-Cl/M	1,0084	1,0143	3,0402	3,0476	3,0150	3,0043
T3f	1,0154	1,0104	3,0237	3,0178	2,9778	2,9866
ЖК	$-D_0$		D	b_{0i}	$b_i \cdot 10^4$, °C ⁻¹	$\kappa \cdot 10^5$, °C ⁻²
	опыт	(6)				
Ch-Cl/M	2,3094	2,3095	3,0397	1,5300	4,4066	3,7640
T3f	2,2835	2,2849	3,0228	1,5196	4,1209	0,6373

Экспериментальные и рассчитанные по указанным формулам коэффициенты, фигурирующие в зависимостях (2), (3), (5), (7), (10), (16), (19) для исследованных ЖК

В изотропной фазе зависимость $n_i(t)$ имеет вид:

$$n_i(t) = b_{0i} - b_i t, (19)$$

причем соотношение величин b_{0i} для обоих ЖК близко к соотношению коэффициентов B_0 или b_0 . Для фазы N_Q имеют место такие же неравенства $b_{0i} < B_0 < b_0$ и $b_i < B < b$, что и для изученных ранее каламитных нематиков СНСА ($b_{0i} = 1,4739$; $b_i = 3,5714 \cdot 10^{-4}$) и 5ВСО ($b_{0i} = 1,5355$; $b_i = 2,4034 \cdot 10^{-4}$) [13]. Однако для фазы N_D характерны соотношения $B_0 < b_0 < b_{0i}$ и $B < b < b_i$. Для Ch-Cl/M и T3f при $t = t_{\rm NI}$ различие значений $\langle n \rangle$ и n_i пренебрежимо мало.

Зависимости $n_{0,e}(t)$ хорошо аппроксимируются формулами (1), (2), (7) во всем интервале мезофазы, включая точки $t_{0,e}$ и температуру t_{NI} . Значения разности ($t_1 - t_{0,e}$), рассчитанной по формулам (8) и (14), приведены в таблице. Их существенное различие обусловлено отличием формул (9), (15) и совокупным различием входящих в них параметров. Из рисунка видно, что формулы (10), (16) описывают изменение $n_{0,e}(t)$ в окрестности точек $t_{0,e}$, а область их применимости расширяется по мере увеличения разности ($t_1 - t_{0,e}$) и уменьшения коэффициента к при переходе от Ch-Cl/M к T3f.

Табличные данные показывают, что для обоих объектов соотношения (12), (17) выполняются с достаточно хорошей точностью, хотя для T3f точка t_e лежит за предела-

10 ≈≈

≈≈

ми интервала нематической фазы. Имеющиеся расхождения обусловлены различием значений $t_{o,e}$ и t_m . Например, учет этого различия для отношения g/b с использованием формулы (4) дает для нематиков N и N_Q выражение [19]

$$g/b = 2\,\overline{n}\,(t_{\rm o})[1 - b(t_m - t_{\rm o})/\,\overline{n}\,(t_{\rm o})],\tag{20}$$

а для нематиков N_D – следующую связь

$$g/b = 2\overline{n} (t_e)[1 - b(t_m - t_e)/\overline{n} (t_e)].$$
⁽²¹⁾

Из (20) и (21) получаем для Ch-Cl/M и T3f соответственно значения g/b = 3,0154 и 3,9781, которые практически совпадают с экспериментальными. При близких значениях $t_0 = 63,93^\circ$ и $t_e = 63,44^\circ$ эти ЖК имеют разные соотношения $t_m < t_0$ (Ch-Cl/M) и $t_m > t_e$ (T3f), что обусловливает разный знак поправок к теоретическим значениям соотношений в формулах (12), (20) и (17), (21). С этим связаны противоположные соотношения экспериментальных значений b/B, g/B, g/b и рассчитанных по формулам (12) и (17) для Ch-Cl/M и T3f.

3. Минимальный размер нематического образца с неизменными оптическими свойствами

В соответствии с (1), значения $n_{0,e}$ определяются параметрами $\langle n \rangle$ и $\Delta n(t) \sim S(t)$, из которых второй наиболее чувствителен к факторам, влияющим на параметр ориентационного порядка молекул S(t). Если учесть, что обрезание длинноволновой части спектра упругих тепловых колебаний директора **n** при уменьшении размера нематического образца относительно слабо влияет на измеряемое значение S(t) [1, 20], то существенным фактором является сила сцепления директора **n** с ограничивающими поверхностями [20, 21]. Рассмотрим предельные случаи слабого и сильного сцепления.

В случае слабого влияния граничных условий ориентации директора **n** однородноориентированного нематика на значения *S* в объеме образца характер зависимостей (2), (7) и положение точек t_0 (t_e) для фаз N и N_Q (N_D) будут слабо зависеть от размера *L* образца при его снижении до значений $L_{\min} \ge 2\xi(t)$, где $\xi(t)$ – радиус корреляции равновесных длинноволновых флуктуаций параметра порядка *S*.

В нематической и изотропной фазах величина ξ зависит от степени близости к температуре $t_{\rm NI}$. Для типичного нематика MBBA имеем $\xi(t_{\rm NI}) \approx 15\xi_0$ и $\xi(t_{\rm NI} - 30^\circ) \approx 2\xi_0$ [1], где прямая корреляционная длина $\xi_0(N) \approx 6$ Å [22]. Для N_D-фазы T3f с таким же значением $S(t_{\rm NI}) = 0,322$, что и для MBBA, величина $\xi_0(N_D) \ge 5\xi_0(N)$ [16] отвечает более высокому значению $L_{\rm min}(N_D) >> L_{\rm min}(N)$. В этом состоит еще одно отличие фаз N и N_D. Если учесть, что в лиотропных мицеллярных нематиках N_D величина ξ_0 также в несколько раз больше, чем в термотропных нематиках N [16, 23], то для мицеллярных нематиков N_D справедлива приведенная выше оценка $L_{\rm min}(N_D)$.

При сильном сцеплении директора **n** с ограничивающими поверхностями параметр порядка S(z) молекул, заключенных в объеме dV(z) образца, зависит от расстояния *z* этого объема до поверхности [20, 21], и для оценок можно принять зависимость $S(z) = S_b + (S_0 - S_b)\exp(-z/z_c)$ (22)

с характерным масштабом z_c проявления сил поверхностного сцепления. Параметр S_0 (S_b) отвечает значению S в слое, контактирующем с ограничивающей поверхностью (в объеме образца, невозмущенном влиянием поверхности). При малой толщине образца L неоднородность значений S(z) и их температурных зависимостей может привести к существенному искажению средней по толщине образца величины

$$S = (2/L) \int_{0}^{L/2} S(z) dz = S_b + (S_0 - S_b)(2z_c/L)[1 - \exp(-L/2z_c)], \qquad (23)$$

а также величин $n_{o,e}$, Δn , $\langle n \rangle$ и их температурных зависимостей. В данном случае условие $S \approx S_b$ сохранения оптических свойств образца отвечает требованию $L_{\min} >> 2z_c$. Параметр z_c зависит от типа ориентации директора (планарной или гомеотропной), структуры поверхности, физико-химических свойств поверхности и молекул ЖК [20, 21]. В общем случае минимальный размер образца должен удовлетворять условию $L_{\min} >> \max \{2z_c, 2\xi\}$.

4. Заключение

Представленные результаты показывают, что линейные зависимости (2) и (3), справедливые для каламитных нематиков N и холестериков [13], выполняются и для квазинематического слоя каламитного холестерика (N_Q) и чистого нематика N_D. Таким образом, характер этих зависимостей не чувствителен к величине анизотропии (сравнение объемного нематика N, или холестерика, с локальным нематиком N_Q) и знаку анизотропии (сравнение объемных фаз N и N_D) поверхности $F(\mathbf{R})$ и является отличительной чертой нематического упорядочения молекул независимо от их формы. В то же время слоистое упорядочение молекул в смектической фазе A проявляется в квадратичных зависимостях $\langle n \rangle(t)$, $\bar{n}(t)$, $\bar{\epsilon}(t)$ [19]. Установленное здесь новое отличие фаз N, N_Q от N_D состоит в отличии соотношений $b_{0i} < B_0 < b_0$ и $b_i < B < b$ для фаз N, N_Q от соотношений $B_0 < b_0 < b_{0i}$ и $B < b < b_i$ для фазы N_D. Это может быть связано с особенностями формы и взаимной упаковки лакунарных молекул, образующих фазу N_D, с возможностью их взаимного проникновения и эффективного заполнения лакун (пустот) между радиально-расходящимися периферийными фрагментами одной молекулы такими же фрагментами соседних молекул [24].

Формулы (12), (17) хорошо выполняются для фаз N_Q и N_D, несмотря на положение точки t_e вне экспериментального интервала фазы N_D. Это показывает независимость данных соотношений от величины и знака анизотропии поверхности $F(\mathbf{R})$. Минимальный размер L_{min} нематического образца с однородной ориентацией директора, сохраняющий оптические свойства, зависит от особенностей фазового перехода N(N_D)–I и условий фиксации директора на ограничивающих поверхностях. При слабом сцеплении директора с поверхностью соотношение $L_{min}(N_D) >> L_{min}(N)$ справедливо для термотропных и лиотропных мицеллярных нематиков N_D.

Список литературы

- 1. Аверьянов Е. М. Эффекты локального поля в оптике жидких кристаллов. Новосибирск: Наука, 1999. 552 с.
- 2. Воловик Г. Е. // Письма в ЖЭТФ. 1980. Т. 31. № 5. С. 297 300.
- 3. *Carlsson T.* // J. de Phys. (Fr.). 1983. Vol. 44. № 8. P. 909 911.
- 4. Кац Е. И., Лебедев В. В. Динамика жидких кристаллов. М.: Наука, 1988. 144 с.

- 5. Palffy-Muhoray P., Lee V. A., Petschek R. G. // Phys. Rev. Lett. 1988. Vol. 60. № 22. P. 2303 – 2306.
- 6. Ayton C., Patey G. N. // Phys. Rev. Lett. 1996. Vol. 76. № 2. P. 239 242.
- 7. Аверьянов Е. М. // Письма в ЖЭТФ. 1997. Т. 66. № 12. С. 805 810.
- 8. Аверьянов Е. М. // Опт. журн. 1998. Т. 65. № 7. С. 5 15.
- 9. Аверьянов Е. М., Гуняков В. А., Корец, А. Я., Акопова О. Б. // Письма в ЖЭТФ. 1999. T. 70. № 1. C. 30 – 35.
- 10. Аверьянов Е. М., Гуняков В. А., Корец, А. Я., Акопова О. Б. // Опт. и спектр. 2000. T. 88. № 8. C. 979 – 986.
- 11. Аверьянов Е. М., Жуйков В. А., Шабанов В. Ф. // Кристаллография. 1984. Т. 29. № 3. C. 542 – 545.
- 12. Gunyakov V. A., Shibli S. M. // Liq. Cryst. 2003. Vol. 30. № 1. P. 59 64.
- 13. Аверьянов Е. М. // Жидкие кристаллы и их практическое использование. 2007. Вып. 2. С. 63 – 73.
- 14. Phillips T. J., Jones J. C. // Liq. Cryst. 1994. Vol. 16. № 5. P. 805 812.
- 15. Минеев Л. И., Кирсанов Е. А. // Жидкие кристаллы и их практическое применение: Межвуз. сб. / Под ред. И. Г. Чистякова. Иваново: Иван. гос. ун-т, 1976. С. 32 – 37.
- 16. Аверьянов Е. М. // ЖЭТФ. 1996. Т. 110. № 5. С. 1820 1840.
- 17. Chao N.-M., Chu K. C., Shen Y. R. // Mol. Cryst. Liq. Cryst. 1982. Vol. 81. № 1 2. P. 103 – 120.
- 18. Warmerdam T. W., Nolte R. J. M., Drenth W. et al. // Liq. Cryst. 1988. Vol. 3. № 8. P. 1087 – 1104.
- 19. Аверьянов Е. М. // Жидкие кристаллы и их практическое использование. 2007. Вып. 3. С. 5 – 13.
- 20. Madhusudana N. V., Dhara S. // Eur. Phys. J. E. 2004. Vol. 13. № 2. P. 401 408.
- 21. Блинов Л. М., Кац Е. И., Сонин А. А. // УФН. 1987. Т. 152. № 3. С. 449 477.
- 22. Анисимов М. А. Критические явления в жидкостях и жидких кристаллах. М.: Наука, 1987. 271 c.
- 23. Kumar S., Litster J. D., Rosenblatt C. // Phys. Rev. A. 1983. Vol. 28. № 3. P. 1890 -1892.
- 24. Аверьянов Е. М. // ФТТ. 2005. Т. 47. № 2. С. 365 375.

Поступила в редакцию 22.06.2007 г.