УДК 535.012.2: 532.135

М. В. Якемсева, И. В. Новиков*, Н. В. Усольцева

ВЛИЯНИЕ ДИСПЕРГИРОВАННЫХ УГЛЕРОДНЫХ НАНОТРУБОК НА ФИЗИЧЕСКИЕ СВОЙСТВА ХОЛЕСТЕРИЧЕСКИХ МЕЗОГЕНОВ

INFLUENCE OF CARBON NANOTUBE DISPERSION ON PHYSICAL PROPERTIES OF CHOLESTERIC MESOGENS

Ивановский государственный университет, НИИ наноматериалов, 153025 Иваново, ул. Ермака, д. 39. Е-mail: m_yakemseva@yahoo.com *Ивановский государственный химико-технологический университет 153000 Иваново, пр. Ф. Энгельса, д. 7

В работе исследуется влияние диспергированных углеродных нанотрубок на ряд физических параметров дисперсионных сред – холестерических мезогенов. Проанализированы такие важные для практического применения показатели как температуры фазовых переходов, оптические свойства и реологические характеристики.

Ключевые слова: углеродные нанотрубки, холестерические мезогены, мезоморфизм, температура фазового перехода, показатель преломления, динамическая вязкость.

The influence of carbon nanotube dispersion on the number of physical parameters of dispersion medium – cholesteric mesogens is investigated in this work. Such important for practical application parameters as temperature of phase transitions, optical properties and rheological characteristics are analyzed.

Key words: carbon nanotubes, cholesteric mesogens, mesomorphism, temperatures of phase transitions, refractive index, dynamic viscosity.

Введение

В настоящее время в связи с инновационным развитием микро- и наноэлектроники, внимание ученых все больше уделяется созданию новых тонкопленочных органических композиционных материалов, функциональные свойства которых, с одной стороны, позволят обеспечивать оптимальные характеристики по чувствительности, быстродействию, электропроводности, теплопроводности, а с другой стороны, – выдерживать интенсивное световое облучение, большие механические нагрузки и существенный перепад температур [1].

Высокая способность жидких кристаллов (ЖК) к ориентации под воздействием электрических и магнитных полей позволяет использовать их в качестве легкоуправляемых матриц [2]. Особенно интересны, перспективны и в то же время наименее изучены холестерические жидкие кристаллы (ХЖК). Важнейшее их свойство – способность к селективному отражению циркулярно поляризованного света, обусловлено спирально закрученной надмолекулярной структурой. Шаг спирали зависит от различных факторов – это и обуславливает возможность использования ХЖК для индикации

[©] Якемсева М. В., Новиков И. В., Усольцева Н. В., 2010

температур, визуализации тепловых полей, электромагнитных излучений и ультразвуковых колебаний. В электрооптике главным образом используется изменение надмолекулярной структуры ЖК в электрических и магнитных полях [3, 4].

Введение в жидкокристаллическую основу углеродных нанотрубок (УНТ) как перспективных сенсибилизаторов может способствовать: повышению электропроводности, увеличению теплопроводности и теплостойкости, улучшению механических характеристик, изменению структуры матрицы, повышению степени её кристалличности, приданию жидкому кристаллу новых функциональных свойств [5].

Мы полагаем, что органические материалы на основе ЖК, структурированные УНТ, конкурентоспособны и могут заменить собой ряд объемных электрооптических структур, используемых для целей микро- и наноэлектроники, оптики и нелинейной оптики.

Несмотря на уникальность физических свойств УНТ, ключевая проблема заключается в их склонности к агрегированию, что затрудняет гомогенное распределение трубок в объеме матрицы. Количество публикаций, связанных с путями получения достаточно стабильных дисперсий УНТ в жидких кристаллах, оказалось ограниченным. Однако анализ литературы позволил установить, что одним из важнейших условий получения достаточно стабильных дисперсий УНТ является необходимость превалирования в системе взаимодействия молекул матрицы с УНТ по сравнению с взаимодействием нанотрубок между собой [6]. Новейшие разработки зарубежных ученых связаны с созданием в качестве дисперсионной среды нового класса многофункциональных молекул, содержащих в своем составе мезогенную группу и группу, являющуюся «якорем» к УНТ [7]. Эти два фрагмента соединены в молекуле посредством гибкого спейсера, выполняющего роль ПАВ. Мезогенная якорная группа в молекуле обычно представлена ароматическими соединениями. Таким образом, наличие в молекуле ЖКматрицы длинного алифатического заместителя, а также плоского полициклического или полиароматического фрагмента, на наш взгляд является фактором, который также будет благоприятствовать получению стабильных дисперсий с УНТ.

Это побудило нас исследовать в качестве ЖК-матриц представителей ряда сложных эфиров холестерола – тридецилат холестерола (I), миристат холестерола (II) и олеат холестерола (Текон-20, III), содержащих плоский полициклический фрагмент и алифатический заместитель различной степени протяженности (рис. 1).

Рис. 1. Структурная формула сложных эфиров холестерола I – III

Ранее в доступной нам литературе не имелось сообщений об изучении влияния особенностей химического строения ХЖК на стабильность УНТ. Учитывая роль ХЖК в создании новых интересных в практическом применении оптических и сенсорных устройств, введение УНТ явится важным путем модификации их свойств.

Целью работы стало изучение влияния диспергированных углеродных нанотрубок на физические свойства холестерических матриц, в том числе, в зависимости от углеводородной периферии формирующих матрицу мезогенов.

Экспериментальная часть

Исследуемые химически чистые ЖК-матрицы – тридецилат холестерола (заводская маркировка *X-20*), миристат холестерола (заводская маркировка *X-15*) и *Текон-20* были произведены Харьковским заводом химреактивов. Контроль чистоты соединений вёлся по температурам просветления.

В качестве активного сенсибилизатора использовался углеродный материал «*Таунит-М*» (чистота > 98 %), предоставленный ООО «Нанотехцентр» (Россия, Тамбов). «*Таунит-М*» представляет собой многослойные углеродные нанотрубки (МУНТ длиной более 2 *мкм* с наружным диаметром 8 – 15 *нм*, внутренним 4 – 8 *нм* и удельной поверхностью 300 m^2/c), полученные путем газового химического осаждения в процессе каталитического пиролиза углеводородов (рис. 2).

Рис. 2. Микрофотография УНМ «Таунит-М» [8]

Для одновременной реализации процесса дезагрегирования наноматериала и его равномерного распределения. МУНТ вводились в ХЖК-матрицу путем ультразвукового диспергирования соответствующей навески МУНТ в ЖК-среде в течение 10 мин. при температурах, на 1 - 2 °C превышающих температуру перехода в изотропное состояние, затем – в течение 30 - 60 мин. при температуре мезоморфного состояния с целью повышения их стабилизации. Диспергирование системы проводилось при помощи ультразвуковой бани Sonorex Digital фирмы Bandelin.

Одними из основных физических параметров композиций ЖК с МУНТ, характеризующих жидкокристаллические материалы для электрооптических и сенсорных устройств, являются температурный интервал существования мезофазы, оптические свойства и реологические характеристики.

Мезоморфизм и температуры фазовых переходов как индивидуальных соединений, так и дисперсий с МУНТ, были изучены при помощи методов оптической поляри-

зационной микроскопии с использованием микроскопа *Leitz LaborLux 12 Pol* с термосистемой фирмы *Mettler FP-82*. Конструкция термостолика позволяет изменять скорость нагрева от 0,1 °С/мин. до 20 °С/мин., работать в широком интервале температур от 25 °С до 300 °С и длительное время поддерживать заданную температуру. Точность измерения температуры составляла 0,1 К.

Показатели преломления измерялись при помощи термостатируемого *рефрактометра Abbe* с точностью ± 0,0005. В ходе работы применялся рефрактометрический метод, основанный на измерении угла полного внутреннего отражения, который на длине волны $\lambda = 589 \ \text{нм}$ даёт значения n_{\perp} практически для всех ЖК и n_{\parallel} для ЖК с небольшой оптической анизотропией ($\Delta n \le 0, 15 \div 0, 18$).

Реологические свойства исследовались методом ротационной вискозиметрии на программируемом вискозиметре *Brookfield DV- II + PRO* (измерительная система «конус – плоскость» с погрешностью $0,02 \ c\Pi_3$), предназначенном для измерения вязкости жидкости при заданных скоростях сдвига. Вискозиметр соединен с циркуляционной жидкостной баней модели *Brookfield TC-102D* (точность поддержания температуры составляет 0,1 К), в которой в качестве теплоносителя используется дистиллированная вода.

Обсуждение результатов

Методом оптической поляризационной микроскопии проведены исследования *мезоморфизма и температур* фазовых переходов холестерических мезогенов как индивидуальных компонентов, так и с дисперсией углеродных нанотрубок в широком диапазоне температур (от температуры плавления до температуры просветления). Температуры соответствующих фазовых переходов представлены в табл. 1 и табл. 2 соответственно.

Таблица 1

N⁰	Температуры фазовых переходов	
соединения	нагрев	охлаждение
Ι	$Cr \bullet 63,3 SmA \bullet 78,8 N^* \bullet 84,2 Iso$	Iso • 81,8 N^* • 77,6 SmA • 46,7 Cr
II	$Cr \bullet 71,4 SmA \bullet 79,3 N^* \bullet 84,0 Iso$	Iso • 81,0 N^* • 78,3 SmA • 46,2 Cr
III	N [*] • 35,2 Iso	Iso • $32,9 \text{ N}^*$

Температуры фазовых переходов индивидуальных компонентов

Таблица 2

Температуры фазовых переходов композиций ХЖК с 0,005 вес. % МУНТ

N⁰	Температуры фазовых переходов	
композиции	нагрев	охлаждение
І-МУНТ	$Cr \bullet 62,8 SmA \bullet 77,8 N^* \bullet 84,0 Iso$	Iso • 81,7 N^* • 76,9 SmA • 44,0 Cr
ІІ-МУНТ	$Cr \bullet 70,4 SmA \bullet 78,2 N^* \bullet 83,2 Iso$	Iso • $80,7 \text{ N}^* \bullet 77,3 \text{ SmA} \bullet 43,3 \text{ Cr}$
ІІІ-МУНТ	N [*] • 35,1 Iso	Iso • $32,4$ N [*]

Результаты исследований показали, что введение 0,005 вес. % МУНТ приводит к сдвигу точек фазовых переходов в область низких температур. Показано повышение структурированности текстуры миелиновых фигур в холестерической фазе (рис. 3) и сохранение хиральности в кристаллической фазе соединения **II** в присутствии МУНТ, что не наблюдалось у индивидуального соединения (эффект памяти, рис. 4).

Рис. 3. Текстуры миелиновых фигур холестерической фазы: a - индивидуального соединения **II**, $\delta -$ в системе **II** с 0,005 вес. % МУНТ

Рис. 4. Полигональные текстуры кристаллической фазы: *а* – индивидуального соединения **II**, *б* – в системе **II** с 0,005 вес. % МУНТ

Аналогичные текстуры миелиновых фигур холестерической фазы наблюдались также для соединений I и III, а полигональные текстуры – для кристаллической фазы соединения I.

Особенностью оптических свойств одноосного жидкого кристалла является наличие у него двух главных показателей преломления. Вследствие того, что оптическая ось холестерической структуры направлена вдоль оси спирали, перпендикулярной локальному направлению директора, один из показателей преломления – n_o , характеризует распространение обыкновенной световой волны, электрический вектор которой параллелен оптической оси, другой n_e – распространение необыкновенной линейнополяризованной световой волны, электрический вектор которой перпендикулярен оптической оси. Величина двулучепреломления характеризуется разностью $\Delta n = n_e - n_o$, где $n_o = [(n_{||}^2 - n_{\perp}^2)/2]^2$, $n_e = n_{\perp}$. ХЖК обладают отрицательным двулучепреломлением ($\Delta n < 0$), поскольку направление максимальной скорости распространения света таково, что его плоскость поляризации перпендикулярна молекулярным слоям (т. е. $n_{||} > n_{\perp}$) [9]. Температурные зависимости показателей преломления и их анизотропии для Текона-20 и его системы с 0,005 вес. % МУНТ представлены на рис. 5. С повышением температуры показатели преломления n_e и n_o постепенно сближаются (рис. 5, *a*). Виден резкий скачок показателей преломления в точке просветления и рост двулучепреломления при понижении температуры, отражающий рост параметра порядка. В изотропножидкой фазе наблюдается уменьшение значений показателей преломления с ростом температуры.

Рис. 5. Температурные зависимости показателей преломления (*a*) и анизотропии показателей преломления (*б*) Текона-20 как индивидуального соединения, так и в системе с 0,005 вес. % МУНТ

Для всех исследованных эфиров холестерола, а также дисперсий в них МУНТ, с повышением температуры Δn снижается (рис. 5, δ), что объясняется уменьшением ориентационной упорядоченности молекул. Наиболее резкое изменение Δn наблюдается при температуре перехода из ХЖК в изотропную фазу (с исчезновением ориентационной упорядоченности молекул ХЖК Δn падает до нуля).

Удлинение терминального заместителя в ряду изученных соединений существенного влияния на показатели преломления в мезофазе не оказывает, в то время как введение МУНТ закономерно повышает для всех изученных соединений значения как $n_{e_{,}}$ так и n_{o} , не изменяя в итоге Δn .

Учитывая исключительно важную роль *реологических характеристик* мезофазы в функционировании электрооптических композиций [10], а также с целью изучения влияния межмолекулярных специфических взаимодействий на вязкость индивидуальных жидких кристаллов и их композиций с МУНТ, нами было проведено исследование динамической вязкости. Данные по динамической вязкости необходимы для расчета энергии активации вязкого течения и других физико-химических характеристик. Кроме того, величины динамической вязкости имеют и самостоятельное значение для описания исследуемых объектов, так как определяют время включения электрооптических эффектов.

Как известно [11], течение мезофазы отличается от течения изотропной жидкости вследствие возникновения определенной пространственной ориентации молекул, зависящей от их геометрии, скорости течения, а также от коэффициентов вязкости мезофазы. Реологические измерения начинали при максимальной скорости сдвига и продолжали, ступенчато снижая её [12]. При каждом значении скорости сдвига регистрировали величины крутящего момента, вязкости, напряжения сдвига и температуры. Исходными экспериментальными данными для анализа реологического поведения ХЖК как индивидуальных компонентов, так с 0,005 вес. % МУНТ, стали данные по температурной зависимости вязкости образцов. В качестве примера на рис. 6. представлены кривые зависимости коэффициента динамической вязкости от температуры для соединения **II**.

Puc. 6. Температурные зависимости динамической вязкости X-15 при охлаждении: *a* – как индивидуального соединения при различных скоростях сдвига, *б* – в системе с 0,005 вес. % МУНТ при скорости сдвига 0,6 с⁻¹

Кривые (рис. 6, *a*) показывают, что во всем температурном интервале измерений вязкость η снижается при увеличении скорости сдвига $\dot{\gamma}$, таким образом, ХЖК проявляют неньютоновский тип поведения потока в исследуемой области температур. Данный факт демонстрирует пластичное (или псевдопластичное) поведение материала. Следует отметить, что в изотропной фазе скорость сдвига не влияет на величину вязкости, наблюдается истинно ньютоновский тип течения.

Перегибы, наблюдаемые на зависимости $\eta = \eta(T)$, соответствуют температурам фазовых переходов, определенных методом оптической поляризационной микроскопии. Такое скачкообразное изменение вязкости вызывается нарушением молекулярной организации ЖК. Высота пиков на температурной кривой вязкости у ХЖК в значительной степени зависит от градиента скорости и от природы вещества. Чем меньше градиент скорости, тем больше скачок вязкости в точке перехода.

Введение 0,005 вес. % МУНТ в ХЖК-матрицу (рис. 6, б) способствует повышению вязкости системы и приводит к сдвигу точек фазовых переходов в область более низких температур. Особенно четко наблюдается повышение вязкости при переходе в смектическую фазу. Температурные зависимости динамической вязкости всех исследованных образцов имеют однотипный характер.

Как было указано выше, во всем температурном интервале измерений вязкость X-15 снижается с ростом скорости сдвига, что позволяет применить для описания течения исследуемого соединения модель Кэссона [13]:

 $\tau^{1/2} = \tau_C^{1/2} + \eta_C^{1/2} \cdot \dot{\gamma}^{1/2},$

где τ_c – динамическое предельное напряжение сдвига по Кэссону; η_c – коэффициент вязкости по Кэссону. Чтобы проверить справедливость применения данной модели для соединения X-15, были построены кривые течения как индивидуального компонента, так и в системе с 0,005 вес. % МУНТ в координатах Кэссона (рис. 7).

Рис. 7. Кривые течения соединения Х-15 в координатах Кэссона

Кривые течения представляют собой прямые линии, что свидетельствует о том, что исследуемые образцы подчиняются модели Кэссона. Показано, что введение в систему МУНТ приводит к увеличению угла наклона кривой течения. При помощи программы ORIGIN определены коэффициенты регрессии для X-15 с МУНТ, соответствующие предельному динамическому напряжению сдвига и коэффициенту вязкости по Кэссону.

Заключение

Анализируя рассмотренные в работе вопросы по физическим свойствам композиций холестерический мезоген – углеродные нанотрубки, можно отметить следующее:

- Получены экспериментальные данные по мезоморфным, оптическим и реологическим свойствам трех ХЖК как индивидуальных соединений, так и в присутствии 0,005 вес. % МУНТ в области температур существования мезофазы и изотропной жидкости.
- Показано, что в изученных ХЖК-матрицах получены достаточно стабильные дисперсии МУНТ (с содержанием наночастиц 0,005 вес. %).
- Установлено, что температуры фазовых переходов композиции ХЖК МУНТ сдвигаются на 0,5 – 1,5 °C в область более низких температур по сравнению с чистым ХЖК и повышается структурированность ХЖК-матрицы, при этом проявляются дефекты типа «отпечатков пальцев» в полигональной текстуре кристаллической фазы.
- Показано, что введение МУНТ закономерно повышает для всех изученных соединений значения как n_e , так и n_o , не изменяя в итоге Δn .
- Анализ температурной зависимости динамической вязкости ХЖК МУНТ показал увеличение вязкости композиции по сравнению с индивидуальным ХЖК. Особенно четко наблюдается повышение вязкости при фазовом переходе в

смектическую фазу. Кривые течения всех материалов подчиняются модели Кэссона.

- В пределах изученных холестерических мезогенов, изменение углеводородной периферии не оказало существенного влияния на проанализированные физические свойства систем, содержащих МУНТ.
- Данные о температурах фазовых переходов, полученные разными методами, хорошо согласуются между собой с учётом погрешностей соответствующих экспериментов.

Список литературы

- 1. *Каманина Н. В., Ваганов В. Е. //* Жидкие кристаллы и их практическое использование. 2010. Вып. 2. С.5 24.
- 2. *Dierking I.* Textures of liquid crystals. Wiley-VCH Verlag GmbH and Co KGaA. 2003. 218 p.
- 3. Oswald P., Pieranski P. Nematic and Cholesteric Liquid Crystals. Taylor and Francis, 2005. 618 p.
- 4. *Томилин М. Г., Пестов С. М.* Свойства жидкокристаллических материалов. СПб. : Политехника, 2005. 296 с.
- 5. *Раков Э. Г.* Нанотрубки и фуллерены : Учеб. пособие. М. : Университетская книга, Логос, 2006. 376 с.
- 6. *Scalia G., Schumura S. et al.* // 23rd Intern. Liq. Cryst. Conf. Book of Abstract. Krakow, Poland, 2010. P. 755.
- 7. Lagerwall J., Kühnast M. et al. // 23rd Intern. Liq. Cryst. Conf. Book of Abstract. Krakow, Poland, 2010. P. 144.
- 8. http://nanotc.ru/images/stories/nano_tex/taunit3.jpg
- 9. *Де Жё В.* Физические свойства жидкокристаллических веществ / под ред. А. А. Веденова. М. : Мир, 1982. 152 с.
- 10. Гребенкин М. Ф., Иващенко А. В. Жидкокристаллические материалы. М. : Химия, 1989. 288 с.
- 11. Demus D., Goodby J., Gray G. W., Spiess H. W., Vill V. Handbook of liquid crystals. Wiley-VCH Verlag GmbH, 1998. 2591 p.
- 12. Шрамм Г. Основы практической реологии и реометрии / пер. с англ. И. А. Лавыгина; под ред. В. Г. Куличихина. М. : КолосС, 2003. 312 с.
- 13. *Кирсанов Е. А.* Течение дисперсных и жидкокристаллических систем / под ред. Н. В. Усольцевой. Иваново : Иван. гос. ун-т, 2006. 232 с.

Поступила в редакцию 16.10.2010 г.