УДК 532.783

С. А. Знойко, А. В. Кривова, Г. П. Шапошников, Г. А. Ананьева^{*}, Н. В. Усольцева^{*}

СИНТЕЗ И МЕЗОМОРФИЗМ СУЛЬФОКИСЛОТ ТЕТРА-4-(1-БЕНЗОТРИАЗОЛИЛ)ТЕТРА-5-[1(2)-НАФТОКСИ]ФТАЛОЦИАНИНОВ

SYNTHESIS AND MESOMORPHISM OF SULFONIC ACIDS OF TETRAKIS-4-(1-BENZOTRIAZOLYL)TETRAKIS-5-[1(2)-NAPHTOXY]PHTHALOCYANINES

Ивановский государственный химико-технологический университет, НИИ МГЦ 153000 Иваново, пр. Ф. Энгельса, д. 7. Е-mail: ttoc@isuct.ru *Ивановский государственный университет, НИИ наноматериалов 153025 Иваново, ул. Ермака, д. 39. Е-mail: nv_usolseva@mail.ru

Взаимодействием тетра-4-(1-бензотриазолил)тетра-5-[1(2)-нафтокси]фталоцианинов с тионилхлоридом и хлорсульфоновой кислотой синтезированы соответствующие сульфохлориды, в результате гидролиза которых получены целевые сульфокислоты. Обнаружено, что введение в нафтоксигруппы бензотриазолилзамещенных фталоцианинов сульфогрупп придает полученным соединениям растворимость в воде и водно-щелочных средах. При исследовании электронных спектров поглощения отмечено влияние металла-комплексообразователя, выражающееся в батохромном сдвиге Q-полосы в ряду: Ni < Cu < Zn < AlCl. Зафиксировано, что тетра-4-(1-бензотриазолил)тетра-5-(1',6'-дисульфо-2'-нафтокси)фталоцианин меди проявляет амфотропный мезоморфизм.

Ключевые слова: синтез, сульфокислоты, бензотриазолилзамещенные фталоцианины, мезоморфизм.

Sulfochlorides of benzotriazolylsubstituted phthalocyanines were synthesized by the interaction between tetrakis-4-(1-benzotriazolyl)tetrakis-5-[1(2)-naphthoxy]phthalocyanines and mixture of thionyl-chloride and chlorsulfonic acid. Then sulfochlorides were hydrolyzed by water up to corresponding sulfonic acids. Their solubility in aqueous media is a due to presence of sulfo-groups in naphthoxy-substituents of benzotriazolylsubstituted phthalocyanines. Research of electronic absorption spectra showed the influence of the nature of central metal on place of Q-band in UV-Vis spectra of the synthesized phthalocyanines. Bathochromic shift of Q-band of the studied phthalocyanines in the order: Ni < Cu < Zn < AlCl was observed. It was found that tetrakis-4-(1-benzotriazolyl)tetrakis-5-(1',6'-disulfo-2'-naphthoxy)phthalocyanine of copper possesses amphotropic mesomorphism.

Key words: synthesis, sulfonic acids, benzotriazolylsubstituted phthalocyanines, mesomorphism.

К настоящему времени сульфопроизводные фталоцианинов широко используются в качестве красителей [1], катализаторов различных окислительновосстановительных процессов [2], ведутся интенсивные исследования этих соединений в качестве препаратов для фотодинамической терапии (ФДТ) [3]. Однако, в подавляющем большинстве случаев объектами исследований являются соединения, сульфогруппы которых связаны непосредственно с бензольными кольцами фталоцианина. Гораздо меньше данных о производных фталоцианина, в которых сульфогруппы находятся в заместителях арильной природы и удалены от фталоцианинового макрокольца [4, 5]. Информация же о смешанозамещенных фталоцианинах, содержащих сульфогруппы в

[©] Знойко С. А., Кривова А. В., Шапошников Г. П., Ананьева Г. А., Усольцева Н. В., 2012

оксиарильных заместителях в литературе ограничена в еще большей степени. В этой связи исследование, направленное на синтез, изучение физико-химических свойств и поиск путей практического использования бензотриазолилзамещенных фталоцианинов с удаленными от макрокольца сульфогруппами является актуальным и представляет научный интерес.

На первом этапе в соответствии с методикой, приведенной в [6], нитрильным методом синтезированы исходные металлофталоцианины Шб-д, IVб-д. Комплексы Шг,д, IVг,д получены впервые. Безметальные соединения Ша, IVa получены нагреванием фталонитрилов I, II при 230 °C в присутствии мочевины в течение 2 часов [6].

Взаимодействием фталоцианинов (Ша-д, IVа-д) со смесью тионилхлорида и хлорсульфоновой кислоты в течение 2 часов получали промежуточные продукты – сульфохлориды, которые выделяли выливанием реакционной массы на лёд, обработанный поваренной солью. Образовавшийся осадок темно-зеленого цвета отфильтровывали. Затем сульфохлорид экстрагировали ацетоном, после чего растворитель отгоняли. Полученный продукт кипятили в воде до полного растворения.

Образовавшиеся в результате гидролиза сульфокислоты (Va-д, VIa-д) подвергали жидкостной колоночной хроматографии (сорбент – силикагель М 60, элюент – ДМФА). После удаления элюента полученные вещества подвергали термообработке в вакуум-сушильном шкафу при 100 °C.

Выходы целевых продуктов **Va-**д и **VIa-**д после колоночной хроматографии находятся в пределах от 60 до 90 %. Индивидуальность синтезированных соединений подтверждена данными тонкослойной хроматографии.

С привлечением данных элементного анализа установлено, что в процессе сульфохлорирования с последующим гидролизом в молекулу фталоцианинов, содержащих 1-нафтоксигруппы вступило 4 сульфогруппы, а фталоцианинов с 2-нафтоксигруппами – 8 сульфогрупп.

С учетом литературных данных [7, 8] по сульфированию 1- и 2-нафтола можно предположить, что в случае соединений **Va-д** сульфогруппа вступает в 4 положение 1-нафтоксильного фрагмента, а в случае соединений **VIa-д** – в 1 и 6 положения.

В ИК-спектрах продуктов Vа-д и VIа-д (рис. 1) наблюдается полоса поглощения в области 1090 – 1110 см⁻¹, соответствующая колебаниям связи С-S [9], что подтверждает наличие сульфогрупп. Кроме того, фиксируются полосы валентных колебаний связей С-N и N=N бензотриазольных заместителей при 745 – 747 и 1045 см⁻¹ и Ar-O-Ar (1210 – 1220 см⁻¹).

Рис. 1. ИК-спектр тетрасульфокислоты тетра-4-(1-бензотриазолил)тетра-5-(2-нафтокси)фталоцианина меди (**Vб**)

При исследовании электронных спектров поглощения (ЭСП) соединений Шг,д, IVг,д в ДМФА отмечено, что тетра-4-(1-бензотриазолил)тетра-5-[1(2)-нафтокси]фталоцианины цинка находятся в растворах в неассоциированной форме. В ЭСП комплексов с алюминием Шд, IVд Q-полоса является уширенной (рис. 2).

Зафиксировано влияние природы металла-комплексообразователя на положение Q-полосы в ЭСП в длинноволновой части спектра, которое проявляется в её батохромном сдвиге в ряду: Ni < Cu < Zn < AlCl (табл.).

Рис. 2. Электронные спектры поглощения соединений Шг (*a*) и Шд (б) в ДМФА (1) и хлороформе (2)

Кроме того, при переходе от ЭСП бензотриазолилзамещенных фталоцианинов, содержащих 1-нафтоксигруппы к ЭСП соединений с 2-нафтоксигруппами наблюдается батохромный сдвиг основных полос поглощения (на 2 – 4 нм) (табл.).

Рис. 3. ЭСП соединения **Va**: 1 – в воде, 2 – в растворе NaOH (10 %), 3 – в ДМФА

Рис. 4. ЭСП соединения **Va** в растворе NaOH (10 %): 1 - C₁, 2 - C₁·0,75, 3 - C₁·0,5, 4 - C₁·0,25

В случае сульфокислот Va, VIa в воде и водно-щелочном растворе ЭСП свидетельствуют о протекании процесса ассоциации (рис. 3). Обнаружено, что окончательного разрушения ассоциатов не происходит даже при значительном разбавлении. Об этом говорит практически неизменное соотношение длинноволновых полос поглощения в ЭСП (рис. 4). При этом превалирующей остается полоса поглощения в области 635 нм.

Спектр в ДМФА полностью аналогичен ЭСП исходных фталоцианинов **Ша**, **IVa**, т. е. характеризуется наличием при 682 нм интенсивной и разрешенной единичной Q-полосы (рис. 3).

Рис. 5. ЭСП соединения **Vб**: 1 – в воде, 2 – в растворе NaOH (10 %), 3 – в ДМФА

Рис. 6. ЭСП соединения **Vв**: 1 – в воде, 2 – в растворе NaOH (10 %), 3 – в ДМФА

При сравнении ЭСП сульфокислот металлофталоцианинов V6, VI6 в ДМФА выявлено, что положение и форма полос поглощения в их спектрах практически аналогичны ЭСП исходных металлокомплексов. При смене растворителя на водный раствор NaOH (10 %) происходит значительный батохромный сдвиг длинноволновой полосы поглощения (на 12 нм, табл.). Образования ассоциатов при этом не наблюдается (рис. 5). В то же время в водных растворах полученные вещества находятся в форме ассоциатов. В видимой части спектра присутствуют две интенсивные полосы поглощения при 635 и 687 нм (рис. 5), соотношение интенсивностей которых составляет 1:1,25. При этом фиксируется батохромный сдвиг основных полос поглощения на 3 – 4 нм по сравнению с ДМФА (табл.)

N⁰	ДМФА	вода	10%-ный раствор NaOH
Шг	689	-	-
Шд	705	-	-
IVΓ	691	-	-
IVд	709	-	-
Va	682	687	692
Vб	684	688	695
VB	677	680	689
VΓ	687	690	709
Ѵд	697	702	712
VIa	684	688	694
VIб	684	689	696
VIB	677	682	691
VIΓ	687	691	712
VIд	699	704	716

Положение длинноволновых полос в ЭСП фталоцианинов Ша-д – VIa-д

Аналогичные спектральные изменения, связанные с природой растворителя, имеют место и в случае других металлокомплексов (рис. 6 – 8).

При переходе от комплексов с медью к комплексам с никелем в ЭСП, зафиксированных как в ДМФА, так и в водной и водно-щелочной среде наблюдается гипсохромный сдвиг основных полос поглощения на 4 - 8 нм в зависимости от природы растворителя. При этом у сульфокислот **VB**, **VIB** в ДМФА в длинноволновой области ЭСП наблюдается дополнительная полоса поглощения, характерная для исходных комплексов **ШВ**, **IVB**. В водно-щелочных средах эта полоса отсутствует (рис. 6).

Рис. 7. ЭСП соединения VIг: 1 – в воде, 2 – в растворе NaOH (10 %), 3 – в ДМФА

Рис. 8. ЭСП соединения VIд: 1 – в воде, 2 – в растворе NaOH (10 %), 3 – в ДМФА

В водном растворе тетра-4-(1-бензотриазолил)тетра-5-(1-нафтокси)- или тетра-4-(1-бензотриазолил)тетра-5-(2-нафтокси)фталоцианины хлоралюминия (Vд, VIд) находятся в неассоциированной форме (рис. 8). Возможно, это обусловлено пирамидальным строением координационного узла и наличием при атоме металла- комплексообразователя экстралиганда, как это наблюдается в ряде случаев [10, 11]. Замена 2нафтоксигрупп на 1-нафтоксигруппы вызывает гипсохромный сдвиг Q-полосы (табл.) в ЭСП сульфокислот.

Рис. 9. Микрофотография текстуры термотропной мезофазы соединения **VI6** при нагревании, T = 231,0 °C, николи скрещены, x 250

Рис. 10. Микрофотография текстуры соединения **VI6**, процесс нагрева, T = 290,6 °C, николи скрещены, x 250

При изучении мезоморфных свойств соединений V, VI выявлено, что соединение VI6, подобно его синтетическим предшественникам, обладает термотропным мезоморфизмом (рис. 9), но формирует высокотемпературную мезофазу (Cr • 228,0 °C Mes • 251,9 °C I), тогда как исходное соединение IV6 характеризуется более низкой температурой фазового перехода Cr \rightarrow Mes и более широким диапазоном её существования (Cr • 195,6 °C Mes • 245,7 °C I) [12]. При 290,6 °C наблюдается изменение цвета вещества (до болотного, рис. 10), что вероятно, не связано с процессом его термического разложения [13].

Рис. 11. Микрофотография текстуры лиотропной фазы бинарной системы соединения **VI6** с ДМСО, T = 25 °C, николи скрещены, x 250

Кроме того, продукт VI6, в отличие от IV6 проявляет жидкокристаллические свойства в бинарной системе с ДМСО (рис. 11), а в системах с водой или воднощелочными растворами немезоморфен. При этом, как и большинство бензотриазолилзамещенных фталоцианинов и их металлокомплексов с оксиарильными заместителями, данное соединение в ДМСО не склонно к ассоциации.

Соединение **Vб**, как и его синтетические предшественники, не проявило ни термотропного, ни лиотропного мезоморфизма.

Традиционной областью использования соединений фталоцианинового ряда является их применение в качестве светопрочных красителей и пигментов [13]. В связи с этим были предприняты попытки выявления возможности использования соединений **Va,6, VIa,6** в качестве красителей для крашения хлопчатобумажной ткани и шерсти. Обнаружено, что сульфокислоты тетра-4-(1-бензотриазолил)тетра-5-[1(2)-нафтокси]фталоцианинов меди, высоко растворимые в воде и водно-щелочных средах, проявляют свойства прямых и кислотных красителей и придают образцам зеленый цвет.

Экспериментальная часть

Данные элементного анализа для исследуемых соединений регистрировали на элементном анализаторе FlashEATM 1112.

Электронные спектры поглощения в органических растворителях фиксировали на спектрофотометре HITACHI U-2001 при комнатной температуре.

ИК-спектры записывали на спектрофотометре AVATAR 360 FT-IR в области 400 – 4000 см⁻¹ в таблетках с бромидом калия.

Спектры ¹Н ЯМР растворов образцов **Va,в VIa** в ДМСО-*d6* (Aldrich) записывали на приборе «Bruker DRX-500» с внутренним стандартом ТМС.

Фазовое состояние исследовали методом поляризационной микроскопии, используя оптический термополяризационный микроскоп типа «Leitz Laborlux 12 Pol», снабженный термостоликом «Mettler FP 82».

Формирование лиотропных мезофаз изучали в бинарных системах с органическими растворителями (хлороформ, ДМФА, бензол).

Синтез тетра-4-(1-бензотриазолил)тетра-5-[1(2)-нафтокси]фталоцианинов цинка и хлоралюминия (IIIг,д – IVг,д)

<u>Общая методика</u>: смесь 200 мг (0,51 ммоль) 4-(1-бензотриазолил)-5-[1(2)-нафтокси]фталонитрила и 31 мг (0,17 ммоль) ацетата цинка или 17 мг (0,12 ммоль) безводного хлорида алюминия тщательно растирали, перемешивали в течение 1 часа при 230 – 235 °C, после чего целевой фталоцианин экстрагировали из реакционной смеси хлороформом и подвергали колоночной хроматографии (сорбент – Al₂O₃, элюент – хлороформ).

Тетра-4-(1-бензотриазолил)тетра-5-(1-нафтокси)фталоцианин цинка (Шг) получали по общей методике. Выход: 182 мг (87 %). Найдено, %: С 71,24; Н 3,40; N 17,35; C₉₆H₅₂N₂₀O₄Zn; Вычислено, %: С 71,40; Н 3,25; N 17,35.

Тетра-4-(1-бензотриазолил)тетра-5-(2-нафтокси)фталоцианин цинка (IVг) получали по общей методике. Выход: 187 мг (87 %). Найдено, %: С 70,81; Н 3,55; N 16,95; С₉₆H₅₂N₂₀O₄Zn; Вычислено, %: С 71,40; Н 3,25; N 17,35.

Тетра-4-(1-бензотриазолил)тетра-5-(1-нафтокси)фталоцианин хлоралюминия (Шд) получали по общей методике. Выход: 160 мг (80 %). Найдено, %: С 71,40; Н 3,00; N 17,10; С₉₆H₅₂N₂₀O₄AlCl; Вычислено, %: С 71,53; Н 3,25; N 17,38.

Тетра-4-(1-бензотриазолил)тетра-5-(2-нафтокси)фталоцианин хлоралюминия (IVд) получали по общей методике. Выход: 158 мг (80 %). Найдено, %: С 70,90; Н 3,23; N 17,15; С₉₆H₅₂N₂₀O₄AlCl; Вычислено, %: С 71,53; Н 3,25; N 17,38.

Синтез тетрасульфокислот тетра-4-(1-бензотриазолил)тетра-5-(1-нафтокси) фталоцианина (Va-d) и октасульфокислот тетра-4-(1-бензотриазолил)тетра-5-(2-нафтокси)фталоцианина (VIa-d)

<u>Общая методика</u>: 200 мг (0,12 ммоль) исходного фталоцианина (Ша-д, IVа-д) растворяли в смеси 2 мл (18 ммоль) тионилхлорида и 2 мл (18 ммоль) хлорсульфоновой кислоты и перемешивали в течение двух часов при комнатной температуре, после чего выливали в смесь льда и хлористого натрия. Образовавшийся осадок отфильтровывали, высушивали в эксикаторе над концентрированной серной кислотой в течение 3 суток. Затем экстрагировали ацетоном, после удаления которого сульфохлорид кипятили в воде до полного растворения, удаляли воду. Окончательную очистку осуществляли жидкостной колоночной хроматографией (сорбент – силикагель М 40, элюент – ДМФА), после чего высушивали в вакуум-сушильном шкафу при 100 °C.

Тетрасульфокислота тетра-4-(1-бензотриазолил)тетра-5-(1-нафтокси)фталоцианина (Va) получена из фталоцианина IIIa. Выход: 148 мг (62 %). ¹Н ЯМР, м.д., ДМСО d6, (нумерация протонов приведена на схеме): 9,02 – 8,91 (д, H12, 4H); 8,56 (т, H2, 4H); 8,35 (с, H9, 4H); 8,20 (с, H3, H10, 8H); 8,13 (д, H1, 4H); 7,96 (с, H6, 4H); 7,83 (д, H4, 4H); 7,77 (м, H11, 4H); 7,65 (м, H8, 4H); 7,56 – 7,51 (м, H5, 4H); 7,24 (д, H7, 4H).

Тетрасульфокислота тетра-4-(1-бензотриазолил)тетра-5-(1-нафтокси)фталоцианина меди (Vб) получена из фталоцианина **Шб**. Выход: 256 мг (91 %). Найдено, %: С 58,74; Н 3,901; N 12,44; S 6,76; С₉₆Н₅₂CuN₂₀O₁₆S₄; Вычислено, %: С 58,78; Н 4,11; N 14,28; S 6,54; ИК-спектр, см⁻¹: 1221 (Ar-O-Ar); 1190 (S-Ar), 1045 (N=N), 745 (C-N).

Тетрасульфокислота тетра-4-(1-бензотриазолил)тетра-5-(1-нафтокси)фталоцианина никеля (Vв) получена из фталоцианина IIIв. Выход: 259 мг (92 %). ИКспектр, см⁻¹: 1221 (Ar-O-Ar); 1191 (S-Ar), 1045 (N=N), 745 (C-N). ¹Н ЯМР, м.д., ДМСО d6, (нумерация протонов приведена на схеме): 9,96 (с, SO₃H); 8,91 (д, H¹², 4H); 8,56 (с, H¹, 4H); 8,35 (с, H⁹, 4H); 8,18 (с, H², 4H); 8,11 (д, H⁶, 4H); 7,96 (с, H⁴, 4H); 7,76 (м, H¹¹, 4H); 7,65 (м, H⁸, 4H); 7,59 (м, H⁵, 4H); 7,26 (д, H⁷, 4H).

Тетрасульфокислота тетра-4-(1-бензотриазолил)тетра-5-(1-нафтокси)фталоцианина цинка (Vг) получена из фталоцианина Шг. Выход: 260 мг (92 %). Найдено, %: С 58,93; Н 3,99; N 15,17; S 6,39; C₉₆H₅₂ZnN₂₀O₁₆S₄; Вычислено, %: С 58,78; Н 4,11; N 14,28; S 6,54; ИК-спектр, см⁻¹: 1220 (Ar-O-Ar); 1192 (S-Ar), 1046 (N=N), 747 (C-N).

Тетрасульфокислота тетра-4-(1-бензотриазолил)тетра-5-(1-нафтокси)фталоцианина хлоралюминия (Vд) получена из фталоцианина Шд. Выход: 235 мг (89 %). ИК-спектр, см⁻¹: 1224 (Ar-O-Ar); 1190 (S-Ar), 1046 (N=N), 745 (C-N).

Октасульфокислота тетра-4-(1-бензотриазолил)тетра-5-(2-нафтокси)фталоцианина (VIa) получена из фталоцианина IVa. Выход: 160 мг (68 %). Найдено, %: С 41,99; Н 2,98; N 10,67; S 8,95; C₉₆H₅₄N₂₀O₂₈S₈; Вычислено, %: С 52,05; Н 2,39; N 14,79; S 11,11; Вычислено, %, H₂Pc(VIa)·24H₂O: С 43,94; Н 2,95; N 10,67; S 8,94; ¹H ЯМР, м.д., ДМСО d6, (нумерация протонов приведена на схеме): 8,91; 8,85; 8,81 (т, H8, H9, H11, 12H); 8,56 (с, H2, 4H); 8,35 (с, H10, 4H); 8,16 (д, H1, H3, 8H); 7,98 (с, H6, H7, 8H); 7,67 – 7,81 (м, H4, 4H); 7,56 – 7,47 (м, H5, 4H).

Октасульфокислота тетра-4-(1-бензотриазолил)тетра-5-(2-нафтокси)фталоцианина меди (VI6) получена из фталоцианина IV6. Выход: 231 мг (83 %). Найдено, %: С 49,60; Н 3,26; N 11,04; S 11,51; С₉₆Н₅₂CuN₂₀O₂₈S₈; Вычислено, %: С 50,62; Н 3,36; N 14,30; S 11,26; ИК-спектр, см⁻¹: 1220 (Ar-O-Ar); 1191 (S-Ar), 1045 (N=N), 745 (C-N). Октасульфокислота тетра-4-(1-бензотриазолил)тетра-5-(2-нафтокси)фталоцианина никеля (VIв) получена из фталоцианина IVв. Выход: 257 мг (90%). ИК-спектр, см⁻¹: 1218 (Ar-O-Ar); 1190 (S-Ar), 1045 (N=N), 747 (C-N).

Октасульфокислота тетра-4-(1-бензотриазолил)тетра-5-(2-нафтокси)фталоцианина цинка (VIг) получена из фталоцианина IVг. Выход: 262 мг (93 %). Найдено, %: С 49,75; Н 4,33; N 13,84; S 11,91; С₉₆Н₅₂ZnN₂₀O₂₈S₈. Вычислено, %: С 51,12; Н 2,32; N 14,32; S 11,37; ИК-спектр, см⁻¹: 1220 (Ar-O-Ar); 1193 (S-Ar), 1045 (N=N), 745 (C-N).

Октасульфокислота тетра-4-(1-бензотриазолил)тетра-5-(2-нафтокси)фталоцианина хлоралюминия (VIд) получена из фталоцианина IVд. Выход: 260 мг (92 %). Найдено, %: С 50,50; Н 4,57; N 14,24; S 12,04; С₉₆Н₅₂AlClN₂₀O₂₈S₈. Вычислено, %: С 51,19; Н 2,33; N 14,44; S 11,39; ИК-спектр, см⁻¹: 1220 (Ar-O-Ar); 1193 (S-Ar), 1045 (N=N), 745 (C-N).

Список использованной литературы

- 1. Степанов В. И. Введение в химию и технологию органических красителей. М. : Химия, 1984. С. 520 546.
- 2. *Майзлиш В. Е., Шапошников Г. П.* // Успехи химии порфиринов / под ред. О. А. Голубчикова. СПб. : НИИ химии СПбГУ, 2004. С. 327 355.
- 3. *Рябова А. В., Васильченко С. Ю., Калия О. Л., Лощенов В. Б.* // Российский биотерапевтический журнал. 2008. Т. 7. № 1. С. 31 32.
- 4. *Кулинич В. П., Шапошников Г. П., Бадаукайте Р. А.* // Макрогетероциклы. 2010. Т. 3. № 1. С. 23 29.
- 5. Луценко О. Г., Шапошников Г. П., Кулинич В. П., Любимцев А. В. // ЖОХ. 2009. Т. 74. Вып. 3. С. 491 495.
- 6. Знойко С. А., Камболова А. С., Майзлиш В. Е. и др. // ЖОХ. 2009. Т. 79. Вып. 8. С. 1376 1381.
- 7. *Лисицин В. Н.* Химия и технология промежуточных продуктов: учебник для вузов. М. : Химия, 1987. 368 с.
- 8. Джильберт Э. А. Сульфирование органических соединений / пер. с англ. Е. В. Брауде, А. И. Гершеновича; под ред. А. И. Гершеновича. М. : Мир, 1969. 416 с.
- 9. Смит А. Прикладная ИК-спектроскопия. Основы, техника, аналитическое применение : пер. с англ. Б. Н. Тарасевича / под ред. А. А. Мальцева. М. : Мир, 1982. 328 с.
- 10. *Березин Б. Д.* Координационные соединения порфиринов и фталоцианинов. М.: Наука, 1978. 280 с.
- Петрова О. В. Термодинамические характеристики процессов димеризации и молекулярного комплексообразования водорастворимых сульфо- и карбоксизамещенных металлофталоцианинов с пиридином и этанолом в водных средах : автореф. дис. ... канд. хим. наук. Иваново, 2004. 18 с.
- 12. Знойко С. А., Майзлиш В. Е., Шапошников Г. П., Быкова В. В., Усольцева Н. В. // Жидкие кристаллы и их практическое использование. 2011. Вып. 4 (38). С. 69 79.
- 13. Кривова А. В., Знойко С. А., Шапошников Г. П., Малькова Е. А., Лебедева Н. Ш. // VII Всеросс. школа-конф. молодых ученых «Теоретическая и экспериментальная химия жидкофазных систем (Крестовские чтения)» : тез. докл. Иваново, 2012. С. 167.
- 14. *Moser F., Thomas A.* The Phthalocyanines. Florida, CPC Press Inc., Boca Raton, 1983. Vol. 1. 227 p.; Vol. 2. 157 p.

Поступила в редакцию 8.10.2012 г.