УДК 532.783

В. В. Соцкий, Е. В. Кудрик*, В. В. Быкова, Н. В. Усольцева

НОВЫЕ КОМПЛЕКСЫ ЖЕЛЕЗА (II) С ПРОИЗВОДНЫМИ БЕНЗИМИДАЗОЛА КАК ПЕРСПЕКТИВНЫЕ МАТЕРИАЛЫ ДЛЯ ОПТИЧЕСКИХ УСТРОЙСТВ

NEW Fe(II) COMPLEXES WITH BENZIMIDAZOLE DERIVATIVES AS PERSPECTIVE MATERIALS FOR OPTIC DEVICES

Ивановский государственный университет, НИИ Наноматериалов, 153025 Иваново, ул. Ермака, 39 Факс: (4932) 324677. Е-mail: usol@ivanovo.ac.ru *Ивановский государственный химико-технологический университет 153000 Иваново, просп. Ф. Энгельса, 7. Факс: (4932) 329502. Е-mail: <u>ttos@isuct.ru</u>

Получена серия комплексов на основе 2-(2-пиридил)бензимидазола, обладающих эффектом температурного изменения спинового состояния центрального катиона. Исследована возможность применения данных соединений в качестве оптических термочувствительных элементов.

New series of spin-crossover complexes on the basis of 2-(2-pyridyl)benzimidazole were obtained. The possibility of their application as optical thermo sensors was investigated.

Ключевые слова: синтез, производные бензимидазола, комплексы, изменение спинового состояния, мезоморфизм

Key words: synthesis, benzimidazole derivatives, complexes, spin crossover, mesomorphism

Введение

Одним из перспективных классов соединений, которые могут найти практическое применение в нанотехнологиях (в качестве сенсоров, оптических элементов дисплеев, датчиков давлений и температур [1]), являются комплексы переходных металлов, обладающие способностью изменять спиновое состояние центрального катиона металла под действием каких-либо внешних факторов (давления, температуры, светового излучения и др.).

Изменение спинового состояния центрального катиона металла приводит к закономерному изменению комплекса их физико-химических свойств, таких как магнитные, оптические, реакционная способность. Оптические изменения состояния в случае Fe(II) комплексов можно наблюдать по изменению окраски от красной (низкоспиновое состояние) до практически бесцветной (высокоспиновое состояние) [2]. Данное свойство позволяет применять данные комплексы в качестве оптических датчиков температу-

[©] Соцкий В. В., Кудрик Е. В., Быкова В. В., Усольцева Н. В., 2008

ры. Что касается магнитных свойств, то в низкоспиновом состоянии данные соединения являются диамагнитными (S=0), а в высокоспиновом – парамагнитными (S=2). Особенный интерес представляют соединения, в которых изменение спина сочетается с жидкокристаллическим (ЖК) состоянием вещества. По сравнению с классическими жидкими кристаллами, являющимися диамагнитными, парамагнитные легко ориентируются в магнитных полях низкой интенсивности. Это определяет возможное их практическое применение в качестве материалов для ЖК-дисплеев с низким энергопотреблением и в сенсорике [3].

На сегодняшний день описано много комплексов железа (II) с координационной сферой FeN₆. Эффект изменения спина обнаружен для комплексов железа (II) с лигандами – производными триазолов [4], тетразолов [5], полипиридилов [6], пиколиламинов [7], цианопиридинов [8], полипиразолилборатов [9] и некоторых пиразолил пиридиловых смешанно-лигандных систем [10]. Однако, как правило, температуры изменения спинового состояния находятся в низкотемпературной области, что сужает область применения.

Целью работы являлся синтез соединений, обладающих способностью изменять спиновое состояние центрального катиона металла, со свойствами, позволяющими применять их в качестве оптических датчиков температуры. В ходе работы были получены 4 соединения: три-(2-(2-пиридил)бензимидазол)железо(II) диперхлорат (1), три(1-*N*-додецил-2-(2-пиридил)бензимидазол)железо(II) диперхлорат (2), три-(2-(2-пиридил)бензимидазол)железо(II) дихлорид (3), три(1-*N*-додецил-2-(2-пиридил)бензимидазол)железо(II) дихлорид (4) (рис. 1).

Рис. 1. Структурные формулы соединений 1 – 4

Экспериментальная часть

Элементный анализ проводился на приборе Carlo Erba 1108, ЯМР-спектры измерены на приборе Bruker Avance DPX 300 NB, ИК-спектры (таблетки с KBr) измерены на приборе Avatar 360 FT-IR ESP. Изменение спинового состояния соединений подтверждалось данными измерения магнитной восприимчивости (СКВИД магнетометр Quantum Design MPMS-5 5T), спектров поглощения и пропускания в видимой области (Specord UV–VIS). Полиморфные свойства соединений **1** – **4** изучались поляризационной микроскопией (микроскоп Leitz Laborlux 12 Pol) и ДСК (DSC 200 PC Phox).

Синтез комплексов и лигандов осуществлялся, как показано на схеме 1. Соединение **2a** было получено по реакции алкилирования из соединения **1a** в присутствии додецилбромида и NaOH [11].

Получение 1-N-додецил-2-(2-пиридил)бензимидазола

Соединение было получено по методике, аналогичной [12]. В круглодонную колбу на 150 мл, снабженную мешалкой и обратным холодильником, загружают 10 г (0,051 моль) 2-(2-пиридил)бензимидазола, 2,05 г (0,051 моль) гидроксида натрия, 15,4 г (0.062 моль) бромистого додецила и 100 мл этилового спирта. Смесь нагревают при перемешивании и выдерживают при температуре кипения реакционной массы в течение 24 часов. По окончании выдержки, реакционную массу охлаждают, разбавляют 200 мл дистиллированной воды и трижды экстрагируют целевой продукт гептаном. Полученный гептановый раствор сушат над Na₂SO₄ и упаривают до 1/3 от первоначального объема. Продукт очищают методом колоночной хроматографии (сорбент - Silica Gel 60/40). Примеси элюируют гептаном, а целевой продукт – метанолом. По окончании хроматографии метанол испаряют при температуре не выше 50 °C, продукт перекристаллизовывают из этанола, сушат при комнатной температуре. Выход: 10,3 г (55,32 % от теор.). Данные элементного анализа: Найдено, %: С 79,17; Н 9,28; N 11,09. Вычислено, %: С 79,30; Н 9,15; N 11,55. Данные масс-спектроскопии (полевая десорбция, раствор в CHCl₃): 364 [M+H⁺]⁺. ¹Н ЯМР (CDCl₃), м.д.: 8,76 – 8,66 (д. 1H); 8,35 – 8,24 (д. 1H); 8,04 – 7,92 (тр. 1H); 7,6 – 7,8 (д.д. 2H); 4,9 – 4,7 (м. 2H); 1,81 – 1,6 (тр. 2H); 1,3 – 1,0 (м. 16 H); 1 – 0,8 (м. 3H) (рис. 2).

Получение три-(2-(2-пиридил)бензимидазол)железо(ІІ) диперхлората (1)

В круглодонную колбу на 100 мл, снабженную мешалкой и обратным холодильником помещают 2 г (10,2 ммоль) 2-(2-пиридил)бензимидазола (фирмы Acros Organics) и растворяют в 50 мл метанола. Добавляют 1,6 г (4,4 ммоль) гексагидрата перхлората железа (II). Смесь окрашивается в красный цвет и целевой продукт выпадает в осадок. Выпавший осадок отфильтровывают, промывают на фильтре 50 мл метанола, сушат. Полученный продукт перекристаллизовывают из метанола. Целевой продукт представляет собой порошок оранжевого цвета. Выход: 1,9 г (51,35 % от теор.). Найдено, %: С 51,38; Н 3,19; N 14,97. Вычислено, %: С 51,42; Н 3,21; N 15,01.

Получение три-(1-N-додецил-2-(2-пиридил)бензимидазол)железо(II) диперхлората (2)

В круглодонную колбу на 100 мл, снабженную мешалкой и обратным холодильником помещают 2 г (5,5 ммоль) 1-N-додецил-2-(2-пиридил)бензимидазола, 2,0 г (5,5 ммоль) гексагидрата перхлората железа (II) и 50 мл метанола. Смесь нагревают при перемешивании и выдерживают при температуре кипения реакционной массы в течение 1 часа. По окончании выдержки реакционную массу медленно охлаждают до 5 °C, выпавший темно-красный осадок отфильтровывают, промывают на фильтре небольшим количеством холодного метанола, сушат. Окончательная очистка соединения заключается в экстракции целевого продукта из полученного осадка дихлорметаном, с последующей перекристаллизацией из метанола. Выход: 0,87 г (33,98 % от теор.). Данные элементного анализа: Найдено, %: С 64,10; Н 7,46; N 9,04. Вычислено, %: С 64,28; Н 7,42; N 9,37.

Получение три-(2-(2-пиридил)бензимидазол)железо(ІІ) дихлорида (3)

В круглодонную колбу на 100 мл, снабженную мешалкой и обратным холодильником помещают 2 г (10,2 ммоль) 2-(2-пиридил)бензимидазола и растворяют в 50 мл метанола. Добавляют 0,8 г (4,04 ммоль) тетрагидрата хлорида железа (II). Смесь окрашивается в красный цвет и целевой продукт выпадает в осадок. Выпавший осадок отфильтровывают, промывают на фильтре 50 мл метанола, сушат. Полученный продукт перекристаллизовывают из метанола. Целевой продукт представляет собой порошок оранжевого цвета. Выход: 1,9 г (51,35 % от теор.). Найдено, %: С 60,63; Н 3,72; N 17,64. Вычислено, %: С 60,67; Н 3,79; N 17,69.

Получение три-(1-N-додецил-2-(2-пиридил)бензимидазол)железо(II) дихлорида (4)

В круглодонную колбу на 100 мл, снабженную мешалкой и обратным холодильником помещают 2 г (5,5 ммоль) 1-N-додецил-2-(2-пиридил)бензимидазола, 1,0 г (5,05 ммоль) тетрагидрата хлорида железа (II) и 50 мл метанола. Смесь нагревают при перемешивании и выдерживают при температуре кипения реакционной массы в течение 1 часа. По окончании выдержки реакционную массу медленно охлаждают до 5 °С, выпавший темно-красный осадок отфильтровывают, промывают на фильтре небольшим количеством холодного метанола, сушат. Окончательная очистка соединения заключается в экстракции целевого продукта из полученного осадка дихлорметаном, с последующей перекристаллизацией из метанола. Выход: 0,87 г (33,98 % от теор.). Данные элементного анализа: Найдено, %: С 70,94; Н 8,07; N 10,29. Вычислено, %: С 70,99; H 8,13; N 10,35.

Обсуждение результатов Идентификация полученных соединений

Строение соединений подтверждалось методами элементного анализа, масс- и ИК-спектроскопии. Строение лиганда подтверждалось методом ¹Н-ЯМР. В ЯМР-спектре 1-N-додецил-2-(2-пиридил)бензимидазола (рис. 2) в области слабого поля обнаруживаются 7 групп сигналов. Для пиридильного фрагмента это: два дублета $\delta = 7,25$ –7,35 м.д., 8,35 – 8,24 м.д. и два триплета при $\delta = 8$ м.д. и 7,5 м.д. Сигналы протонов фенильного фрагмента проявляются в виде двух дублетов в области 7,6 – 7,8 м.д. и в наиболее слабом поле (8,76 – 8,66) фиксируется дублет, соответствующий двум эквивалентным протонам. В области сильного поля фиксируются четыре группы сигналов: сигналы, соответствующие двум протонам α -CH₂- группы (4,7 – 4,9 м.д.), β -CH₂-группы (1,6 – 1,8 м.д.), все остальные группы -CH₂- обнаруживаются в виде мультиплета в области 1,3 – 1,0 м.д., протоны концевой группы -CH₃ фиксируются как мультиплет в области 1 – 0,8 м.д.

Рис. 2. ¹Н ЯМР спектр 1-N-додецил-2-(2-пиридил)бензимидазола

Идентификация структуры полученных комплексов методом ЯМРспектроскопии затруднена вследствие парамагнитности железа [13], что приводит к сильному уширению спектра и перекрытию сигналов протонов лигандов.

В ИК-спектре (рис. 3) соединения **1а** обнаруживаются характерные полосы поглощения в областях 1600, 1580, 1500 и 1450 см⁻¹, соответствующие колебаниям ароматических колец бензола и пиридина. Поглощение в области 745 см⁻¹ указывает на тип замещения – 1,2 для бензола и 2 – для пиридина. Полосы поглощения, соответствующие >NH имидазола, обнаруживаются в области 2980 – 2850 см⁻¹.

Рис. 3. ИК-спектры соединений 1а и 1

По сравнению со спектром **1a** в спектре соединения **1** (рис. 3) появляются полосы в области 1144 – 1090 см⁻¹ (перхлорат-ион). В ИК-спектре **2a** появляется поглощение для групп –СН₂–. В ИК-спектре соединения **2**, аналогично **1**, появляются характерные полосы поглощения, соответствующие перхлорат-иону.

Физические свойства

Первоначально нами был получен исследованный ранее комплекс, обладающий эффектом температурного изменения спинового состояния (соединение 1) [12] с температурой $T_{1/2} = 150$ K (рис. 4). Однако данное соединение обладает неудовлетворительными характеристиками с точки зрения применения его в качестве термочувствительного оптического элемента. По данным ИК-спектроскопии происходит образование водородных связей между водородом группы >NH и ионом ClO₄⁻. Об этом свидетельствует широкий пик при 3055 см⁻¹ для >NH и пики для ClO₄⁻ 1144 – 1090 см⁻¹. Это приводит к образованию кристаллов, не имеющих точки плавления (только разложение при 251 °C). делает затруднительным получение однородных термочувствительных слоев. Также известно, что сильное межмолекулярное взаимодействие, сдвигает спиновый переход в область низких температур [1].

Рис. 4. Магнитная восприимчивость и ИК-спектр соединения 1

Дальнейшая работа была направлена на сдвиг спинового перехода в область более высоких температур и получение комплексов, способных формировать однородные пленки. Нами было предпринято алкилирование исходного лиганда. Это позволило не только сдвинуть спиновый переход по температурной шкале за счет изменения кристаллической структуры, но и получить соединение (2), формирующее застеклованное состояние и кубическую мезофазу (рис. 5).

Рис. 5. Магнитная восприимчивость (а) и ДСК (б) соединения 2

74

При исследовании особенностей фазового поведения соединения **2** методом оптической поляризационной микроскопии не наблюдалось характерных для мезофаз текстур. Однако на кривой ДСК имеется пик, проявляющийся в области 73,4 - 81,2 °C (рис. 5) при первом нагревании, свидетельствующий о наличии фазового перехода. Оптически это соответствует расплавлению кристаллов в вязкую жидкость, не дающую текстуры мезофазы в поляризованном свете, что не исключает присутствие кубической мезофазы. В области 110,1 – 123,6 °C происходит переход в изотропное состояние. Визуально это выражается в уменьшении вязкости. При охлаждении, соединение, сохраняя текстуру изотропа, стеклуется. По данным ДСК этот процесс происходит на участке 44,8 – 42,6 °C. При повторном нагревании соединения на кривой ДСК присутствует участок в диапазоне 71,3 – 87,9 °C, соответствующий переходу из застеклованного состояния.

Дальнейшим шагом в развитии работы стало смещение спинового перехода по температурной шкале. Это обусловлено тем, что переход соединения 2 находится в области выше комнатных температур, что сужает область применения. Еще одним способом влияния на температуре перехода является изменение аниона [14]. В результате были получены соединения 3 и 4, в которых перхлорат-ион был заменен хлорид-ионом. По данным измерения магнитной восприимчивости видно, что изменение спинового состояния комплексов сдвинулись по температурной шкале в область более низких температур (рис. 6).

Рис. 6. Магнитная восприимчивость соединений 3 (а) и 4 (б)

По данным ДСК, соединение 4 не формирует мезоморфного состояния: на кривой присутствует только один пик, соответствующий переходу в изотропную фазу (51 °C). Однако при охлаждении данный комплекс, как и соединение 2, формирует застеклованное состояние. Соединение 3, также как и соединение 1, не имеет точки плавления и разлагается при 256 °C.

Оптические характеристики соединений 2 и 4 исследовались путем анализа спектров поглощения и пропускания в видимой области. Спектры поглощения исследовались в растворе хлороформа (с = 10^{-6} моль/л), спектры пропускания были получены для тонкопленочных образцов.

Рис. 7. Спектр поглощения (*a*) в хлороформе и спектр пропускания (*б*) тонкой пленки соединения **2** при комнатной температуре

При комнатной температуре в спектре поглощения комплекса 2 присутствует интенсивная полоса при 500 нм, соответствующая d-d^{*} переходу низкоспинового состояния, что соответствует практически полному отсутствию пропускания в данной области (рис. 7). При нагревании доля комплекса, находящегося в низкоспиновом состоянии, уменьшается и, как следствие, увеличивается пропускание. В ходе эксперимента температура нагревания была ограничена 200 °C (предел устойчивости соединений). В связи с этим для соединения 2 не был достигнут полный переход комплекса в высокоспиновое состояние. Однако для соединения 4 после достижения температуры 150 °C изменения спектров не происходит, что свидетельствует о завершении перехода (рис. 8).

Рис. 8. Спектры пропускания (*a*) соединения **2** и зависимость увеличения полосы пропускания в области 500 нм от температуры (б)

Величина пропускания в области 500 нм линейно зависит от температуры, что делает возможным применение данных соединений в качестве материалов для оптических термочувствительных датчиков.

Таким образом, осуществлен синтез серии комплексов на основе 2-(2-пиридил)бензимидазола, обладающих способностью изменять спиновое состояние центрального катиона металла в различных интервалах температур. Получены соединения, способные формировать застеклованное состояние (соединения 2 и 4), что позволяет получать на их основе однородные термочувствительные пленки. У соединения 2 проявляется по всей вероятности кубическая мезофаза. Анализ спектров пропускания показывает возможность использования соединений в качестве материалов для оптических датчиков температуры.

Авторы выражают благодарность, к.х.н., в.н.с. Т. И. Шабатиной и д.х.н., зав. каф. химической кинетики химического ф-та Московского гос. университета Г. Б. Сергееву за помощь и консультации при проведении исследования.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ (Грант РНП.2.2.1.1.7280).

Список литературы

- 1. Real J. A., Gaspar A. B., Munoz M. C. // Dalton Trans. 2005. P. 2062 2079.
- 2. Reger D. L., Gardiner J. R. // Inorg. Chem. 2005. Vol. 44. P. 1852 1866.
- 3. Havami S., Danjobara K., Miyazaki S. // Polyhedron. 2005. Vol. 24. P. 2821 2827.
- 4. Roubeau O., Gomez J. M. A., Balskus E. et al. // New J. Chem. 2001. Vol. 25. P. 144 -150.
- 5. Grunert C. M., Schweifer J., Weinberger P. W. et al. // J. Inorg. Chem. 2004. Vol. 43. P. 155 – 165.
- 6. Moliner N., Munoz M.C., Letard S. et al. // Inorg. Chem. 2002. Vol. 41. P. 6997 7005.
- 7. Spiering H., Meissner E., Koppen H., Muller E.W., Gutlich P. // Chem. Phys. 1982. Vol. 68. P. 65 – 71.
- 8. Galet A., Niel V., Munoz M. C., Real J. A. // J. Am. Chem. Soc. 2003. Vol. 125. P. 14224 -14225.
- 9. Oliver J. D., Mullica D. F., Hutchinson B. B., Milligan W. O. // Inorg. Chem. 1980. Vol. 19. P. 165 – 169.
- 10. Leita B. A., Moubaraki B., Murray K. S. et al. // Chem. Commun. 2004. P. 156 157.
- 11. Preston P. M. // The chemistry of heterocyclic compounds. 1981. Vol. 40. P. 285.
- 12. Boca R., Boca M., Ehrenberg H. // Chemical Physics. 2003. Vol. 203. P. 375 395.
- 13. Маров И. Н., Костромина Н. А. ЭПР и ЯМР в химии координационных соединений. М.: Наука, 1979. 276 с.
- 14. Lemercier G., Verelst M., Boussekssou A. et al. Magnetism: A supramolecular function / Ed. O. Kahn. Kluwer, Dordrecht, 1996. 335 p.

Поступила в редакцию 20.08.2008 г.

76