УДК 544.183.26; 536.7; 532.783

Т. Г. Волкова, Ю. В. Соболева, М. В. Клюев

КОНФОРМАЦИОННЫЕ ИЗМЕНЕНИЯ СТРУКТУРЫ 4-МЕТОКСИБЕНЗИЛИДЕН-4'-*н*-БУТИЛАНИЛИНА ПРИ ТЕМПЕРАТУРАХ, СООТВЕТСТВУЮЩИХ РАЗНЫМ ФАЗАМ И ФАЗОВЫМ ПЕРЕХОДАМ

CONFORMATIONAL CHANGES IN STRUCTURE OF 4-METHOXYBENZYLIDENE-4'-*n*-BUTYLANILINE AT TEMPERATURES CORRESPONDING TO DIFFERENT PHASES AND PHASE TRANSITIONS

Ивановский государственный университет, кафедра органической и биологической химии, 153025 Иваново, ул. Ермака, д. 39. E-mail: tgvolkova@yandex.ru

Методами квантовой химии изучено конформационное поведение 4-метоксибензилиден-4'-н-бутиланилина при температурах, соответствующих разным фазам и фазовым переходам. Установлено, что «нежесткость» молекулы МББА обеспечивается небольшой подвижностью как бензольных колец, так и бутильной группы. Проведено сопоставление полученных результатов с данными, полученными при моделировании МББА методом молекулярной динамики. В приближении изолированной молекулы сопряжение р-электронов атома кислорода с π -электронным облаком бензольного кольца приводит к планарному положению метокси-группы. В то же время, влияние окружающих молекул в объемной фазе приводит к повороту CH₃O-группы в плоскость, перпендикулярную плоскости бензольного кольца.

Ключевые слова: структура, конформации, жидкие кристаллы.

The conformational behavior of 4-methoxy-benzilidene-4'-n-butylaniline at temperatures corresponding to different phases and phase transitions has been studied by quantum chemistry methods. It was shown that «non-rigidity» of the MBBA molecule is provided by a low mobility of the benzene rings and the butyl group. A comparison of the obtained results with the molecular dynamics simulation data for MBBA is performed. According to quantumchemical modeling and taking into account the isolated molecule's approximation the conjugation of p-electrons of the oxygen atom with the π -electron cloud of the benzene ring leads to the planar position of the methoxy-group. At the same time, the influence of the surrounding molecules in the bulk phase leads to a rotation of CH₃O-group in the plane which is perpendicular to the plane of the benzene ring.

Key words: structure, conformation, liquid crystals.

Введение

Для исследования молекулярного строения и проведения конформационного анализа жидких кристаллов применяют полуэмпирические и неэмпирические квантовохимические методы [1 – 4] и методы моделирования молекулярной динамики (МД) [5 – 6].

[©] Волкова Т. Г., Соболева Ю. В., Клюев М. В., 2012

Результаты теоретических и экспериментальных исследований [1, 7, 8] показывают, что молекулы азометинов существуют в виде устойчивых неплоских конформаций. Ряд авторов [7] считают, что степень акопланарности, описываемая двугранными углами, мало зависит от заместителей в арильных ядрах, другие [1, 8], напротив, полагают, что она существенно зависит от объема заместителей и их природы. В работе [9] выдвинута гипотеза о том, что фазовые переходы сопровождаются конформационным изменением молекул жидких кристаллов.

Цель настоящей работы – исследование структуры и конформационных свойств молекулы 4-метоксибензилиден-4'-*н*-бутиланилин (МББА) при температурах, соответствующих разным фазам: кристаллической (К), нематической (N), изотропной (I), и при соответствующих фазовых переходах (кристаллическое состояние \rightarrow нематическая фаза (К \rightarrow N), нематическая фаза \rightarrow изотропная жидкость (N \rightarrow I)). Выбор объекта исследования обусловлен тем, что МББА всесторонне изучен и может быть использован в качестве некоего стандарта для проверки выдвигаемых гипотез и адекватности используемых методов исследования.

Экспериментальная часть

Квантово-химические расчёты выполнялись методом HF/6-31G**++ (GAMESS [10]). Оптимизация геометрии проводилась без наложения ограничений по типу симметрии. В связи с тем, что при оптимизации может быть получен ложный минимум, обязательно осуществлялся контроль типа стационарной точки, для чего рассчитывались колебательные спектры. Отсутствие отрицательных частот в колебательном спектре позволяло сделать вывод о достижении истинного минимума на поверхности потенциальной энергии.

Конформационное моделирование молекулы МББА проводилось с использованием функции Conformation Search (HyperChem 7,5) [11]. В качестве информации для поиска конформеров задавались торсионные углы, образуемые остовом молекулы (они изменяются в процессе конформационного поиска), а также интервал температур, соответствующий определенному фазовому состоянию или фазовому переходу [12].

Результаты и их обсуждение

Оптимизированная структура молекулы МББА и нумерация атомов представлена на рис. 1.

Рис. 1. Структурная формула и нумерация атомов молекулы МББА

Для МББА характерно наличие акопланарности, проявляющейся в ненулевом значении торсионного угла C_4 - C_5 - N_{12} - C_{13} , которое по данным квантово-химических расчетов составляет 45°. Двойная связь C=N находится в плоскости бензольного кольца, связанного с метокси-группой. Значение длин связей, входящих в азометиновую группу МББА, полученные методом HF/6-31G**++, согласуются с результатами электронографического и рентгенографических исследований [13, 14] (табл. 1).

Таблица 1

	HF/6-31G**++	Газовая электронография	Рентгенография					
		[13]	[14]					
Длины связей, Å								
C ₅ -N ₁₂	1,41	1,413 (12)	1,417 (8)					
N ₁₂ -C ₁₃	1,29	1,290 (12)	1,284 (10)					
C ₁₃ -C ₁₄	1,47	1,467 (3)	1,479 (9)					
Двугранные углы, град.								
C ₄ -C ₅ -N ₁₂ -C ₁₃	45	48 (9)	24					
C ₅ -N ₁₂ -C ₁₃ -C ₄	180	180	-177					
N ₁₂ -C ₁₃ -C ₄ -C ₅	0	0 (12)	4					

Строение азометиновой группы

Структурная жесткость молекул определяется возможностью внутримолекулярного вращения. Молекула МББА имеет несколько нежестких координат, связанных с вращением группы ОСН₃, бутильной группы (в том числе и ее фрагментов) и бензольных колец. При изучении конформационного поведения молекулы МББА была использована модель, в которой имелась возможность изменения конформации молекулы за счет изменения двугранных углов, образуемых остовом молекулы, при этом вращение метильных групп не учитывалось.

Рассчитанные потенциальные функции внутреннего вращения в молекуле МББА представлены на рис. 2, a - e) (нумерацию атомов см. на рис. 1).

Из литературы известно, что метокси-группа является довольно жесткой молекулярной структурой [15]. Так, например, для 4-фторанизола барьер внутреннего вращения группы – CH₃ в два раза превышает барьер внутреннего вращения группы – OCH₃ и составляет 4,0 ккал/моль (тепловая энергия RT=0,6 ккал/моль). Электронографические данные, результаты микроволновой спектроскопии и *ab initio* вычислений высокого уровня [16 – 18] показывают, что анизол следует рассматривать как довольно жесткую молекулу, обладающую плоским строением остова, поскольку эта структура стабилизируется за счет взаимодействия между *p*-электронами неподеленной пары атома кислорода и π -облаком бензольного фрагмента.

Полученные нами данные о подвижности метокси-группы согласуются с литературными данными. Барьер вращения достаточно высокий и составляет V=7,11 ккал/моль (рис. 2, *a*).

Т. Г. Волкова, Ю. В. Соболева, М. В. Клюев. Конформационные изменения

~~~~~~~~

*Рис.* 2. Потенциальные функции внутреннего вращения вокруг связей O<sub>28</sub> -C<sub>18</sub>(*a*), C<sub>14</sub> -C<sub>13</sub>(*б*), N<sub>12</sub> -C<sub>5</sub>(*в*), C<sub>2</sub>-C<sub>24</sub>(*c*), C<sub>24</sub> -C<sub>25</sub>(*d*), C<sub>25</sub> -C<sub>26</sub>(*e*) в молекуле МББА

Из рис. 2, б видно, что угол поворота бензольного кольца, связанного с метоксигруппой, составляет 180°. Это свидетельствует о существовании двух конформеров, в которых связь C=N находится в плоскости бензольного кольца. Величина барьера вращения V<sub>1</sub>=2,60 ккал/моль позволяет говорить о небольшой вероятности таких конформационных переходов.

Потенциальная кривая внутреннего вращения вокруг связи  $N_{12}$ - $C_5$ , имеет четыре минимума (рис. 2, *в*). По результатам расчетов в программе HyperChem в наиболее вероятных конформерах торсионный угол равен ±30° и ±150°, что близко к значениям ±45° и ±135°, получаемым в программе GAMESS. Величины барьеров вращения не превышают 1 ккал/моль, что говорит о свободном переходе из одной конформации в другую.

Величина барьера вращения вокруг связи  $C_2$ – $C_{24}$  равна 1,60 ккал/моль. Это значит, что вращение вокруг связи бензольное кольцо–алифатическая цепь не испытывает каких-либо затруднений (рис. 2, *г*).

Вид потенциальной функции внутреннего вращения вокруг связи  $C_{24}$ - $C_{25}$  говорит о возможности существования трех конформеров, для которых значения торсионного угла  $C_2C_{24}C_{25}C_{26}$  будут иметь значения +75°, 180°, -80° (рис. 2,  $\partial$ ). Конформационные переходы между ними маловероятны, поскольку барьеры внутреннего вращения достаточно велики (более 3 ккал/моль).

Из рис. 2, *е* видно, что для данного торсионного угла  $C_{27}C_{26}C_{25}C_{24}$  преобладающим будет значение 180°. Возможно существование конформеров с углом ±60°. Однако, при величине барьера вращения V<sub>1</sub> менее 1 ккал/моль они легко будут переходить в наиболее устойчивый конформер.

Таким образом, «нежесткость» молекулы МББА обеспечивается небольшой подвижностью как бензольных колец, так и бутильной группы.

Проведенный конформационный анализ показал, что все фазовые переходы сопровождаются изменением двухгранных (торсионных) углов (табл. 2, рис. 3). Следует также отметить, что все найденные в конформационном анализе значения торсионных углов соответствуют или очень близки минимумам потенциальных функций внутреннего вращения.

Таблица 2

Значения торсионных углов в градусах в молекуле МББА при температурах существования фаз и фазовых переходов

| Торсионные углы            | Фазовые состояния, фазовые переходы |      |                  |      |      |  |
|----------------------------|-------------------------------------|------|------------------|------|------|--|
|                            | К                                   | К→N  | Ν                | N→I  | Ι    |  |
| $C_{13}N_{12}C_5C_4$       | -106                                | 31   | 152 (±135, ±45)* | -151 | 0    |  |
| $C_{19}C_{18}O_{28}C_{29}$ | -177                                | 1    | 1 (±90)          | 1    | 180  |  |
| $C_{25}C_{24}C_2C_3$       | 164                                 | 164  | 71 ( ±90)        | 110  | -109 |  |
| $C_{26}C_{25}C_{24}C_2$    | 46                                  | 46   | -178 (180, ±75)  | 178  | -178 |  |
| $C_{27}C_{26}C_{25}C_{24}$ | -62                                 | -62  | 180 (180, ±75)   | 180  | 180  |  |
| $H_{36}C_{27}C_{26}C_{25}$ | 169                                 | -74  | 180 (180, ±60)   | 180  | -60  |  |
| $C_{14}C_{13}N_{12}C_5$    | 1                                   | -179 | 179 (180)        | -179 | 0    |  |
| $C_{16}C_{14}C_{13}N_{12}$ | -151                                | 5    | 172 (0, 180)     | 9    | 0    |  |

\*В скобках указаны значения, полученные из моделирования МД

Поскольку приведенные результаты расчетов соответствуют конформациям изолированной молекулы в вакууме, то было проведено сопоставление полученных результатов с данными моделирования МД МББА в объемной фазе, в которой на конформацию молекулы оказывают влияние не только внутримолекулярные, но и межмолекулярные взаимодействия.

В большинстве значения торсионных углов, полученных для нематической фазы (Conformation Search (HyperChem)) совпадают результатами моделирования МД. Особо необходимо отметить два двугранных угла, которые отличаются в изолированной молекуле и в объемной фазе. Двугранный угол  $C_{19}C_{18}O_{28}C_{29}$  в изолированной молекуле равен 180°, то есть метокси-группа и бензольное кольцо лежат в одной плоскости, барьер вращения составляет примерно 7 ккал/моль. В результате моделирования МД найдено, что наиболее вероятный угол равен  $\pm 90^\circ$ , то есть метмолекулярные взаимодействия заставляют повернуться метоки-группу в плоскость, перпендикулярную плоскости бензольного кольца. Двугранный угол  $C_{13}N_{12}C_5C_4$  в результате моделирования МД найден равным  $\pm 135^\circ$  и  $\pm 45^\circ$  (ср. с рис. 2, *в*). В процессе моделирования МД в части молекул бензольное кольцо, связанное с атомом азота, повернулось на 90° в положение  $+45^\circ$  и  $-135^\circ$ , и еще в меньшей части совершило два поворота по 90° и перешло в положение  $-45^\circ$ . Данный процесс является медленным в рамках моделирования МД (единичные переходы за время моделирования), что не позволяет оценить барьер вращения вокруг этой связи бензольного кольца.

На рис. 3 представлены структуры молекулы МББА, полученные конформационным поиском в функции Conformation Search программы HyperChem и имеющие наименьшее значение общей энергии.



*Рис. 3.* Структура молекулы МББА (по данным квантово-химического моделирования). Конформации соответствующие:

*а* – кристаллической (К) фазе, *б* – фазовому переходу кристалл – нематик (К→N), *в* – нематической (N) фазе, *г* – фазовому переходу нематик – изотропная жидкость (N→I),  $\partial$  – изотропной жидкости (I) В нематической фазе (рис. 3,  $\delta - c$ ) центральный фрагмент молекулы находится в *транс*-конформации, т. е. угол C<sub>14</sub>C<sub>13</sub>N<sub>12</sub>C<sub>5</sub> имеет значение, близкое к 180 градусам. В кристаллической и изотропной фазах конформационный поиск предсказывает *цис*конформацию этого фрагмента, что нельзя признать правильным, поскольку такой конформационный переход предполагает поворот относительно двойной связи C=N. Результаты конформационного анализа, выполненные для температуры, соответствующей кристаллической фазе противоречат рентгенографическим данным [19], согласно которым средняя длина молекулы составляет 19,6 Å, и, следовательно, МББА не может находиться в такой конформации (рис. 3, *a*).

Таким образом, выполненное квантово-химическое моделирование строения молекулы МББА и исследование ее конформационной поведения подтвердило гипотезу о том, что молекулы жидких кристаллов в зависимости от агрегатного состояния находятся в виде различных конформеров. Во всех фазовых состояниях молекула имеет вытянутую структуру. Бензилиденовый фрагмент является жестким и находится в трансконформации. Конформация метокси-группы отличается по данным квантово-химического моделирования в приближении изолированной молекулы и моделирования объемной фазы методом молекулярной динамики. Следует отметить, что конформационный анализ, выполняемый (программа HyperChem) при использовании функции "Conformation Search", может приводить к неадекватным результатам.

Авторы статьи выражают благодарность к.ф-м.н А. В. Комолкину и В. С Неверову (СПбГУ) за предоставленные результаты моделирования МД МББА.

Работа проведена при финансовой поддержке проекта Министерства образования и науки РФ «Развитие фундаментальных научных исследований в области создания функциональных наноматериалов в УНК «Химическая физика» Ивановского госуниверситета и ИПХФ РАН» (РНП 2.2.1.1/11465).

# Список использованной литературы

- 1. Аверьянов Е. М. Стерические эффекты заместителей и полиморфизм. Новосибирск : Издательство СО РАН, 2004. 470 с.
- 2. *Hehre W. J., Radom K. L., Schleyer P. V. R., Pople J. A.* Ab initio molecular orbital theory. NY, Wiley & Sons, 1986. 127 p.
- 3. *Mueller M. R.* Fundamentals of Quantum Chemistry. Molecular Spectroscopy and Modern Electronic Structure Computations. Kluwer, 2001. 280 p.
- 4. Strategies and Applications in Quantum Chemistry. From Molecular Astrophysics to Molecular Engineering / ed. by Y. Ellinger, M. Defranceschi. Kluwer, 2002. 461 p.
- 5. Komolkin A. V., Laaksonen A., Maliniak A. // J.Chem. Phys. 1994. Vol. 101. P. 4103.
- 6. Komolkin A. V., Sandström D., Maliniak A. // J.Chem. Phys. 1997. Vol. 106. P. 7438.
- 7. *Gray G. W.* Molecular structure and properties of liquid crystals. London : Academic Press, 1962. 314 p.
- 8. Журко Г. А., Александрийский В. В., Бурмистров В. А. // Жидкие кристаллы и их практическое использование. 2005. Вып. 1/2 (11/12). С. 13.
- 9. *Клопов В. И.* // Химия растворов : сб. науч. тр. Ин-та химии неводных растворов АН СССР. Иваново, 1990. С. 15 26.
- 10. Gordon M. S., Schmidt M. W. // Theory and Applications of Computational Chemistry: the first forty years: Amsterdam, Elsevier, 2005. P. 1167 1189.
- 11. HyperChem Release 7.5\*\*\* Seriennr. 12-750-150-3700446\*\*\*
- 12. Сонин А. С. Введение в физику жидких кристаллов. М : Наука, 1983. 320 с.

- 13. Kuze N., Fujiwara H., Takeuchi H. et al. // J. Phys.Chem. A. 1999. Vol. 103. P. 3054 3061.
- 14. Boese R., Antipin M. Y., Nussbaumer M., Bläser D. // Liq. Cryst. 1992. Vol. 12. P. 431.
- 15. Giricheva N. I., Girichev G. V., Levina Ju. S., Oberhammer H. // J. Mol. Struct. 2004. Vol. 703. P. 55.
- 16. Seip H. M., Seip R. // Acta Chem. Scand. 1973. Vol. 27. P. 4024.
- 17. Onda M., Toda A., Mori S., Yamaguchi I. // J. Mol. Struct. 1986. Vol. 144. P. 47.
- 18. Federsel D., Hermann A., Christen D. et al. // J. Mol. Struct. 2001. Vol. 567/568. P. 127 –136.
- 19. Новомлинский Л. А., Шмытько И. М., Шехтман В. Ш. и др. // Кристаллорафия. 1987. Т. 32. Вып. 4. С. 911.

Поступила в редакцию 8.02.2012 г.

~~~~~~~~~